首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The resting metabolic rate of the fan-fingered gecko Ptyodactylus hasselquistii of various body masses was determined in relation to ambient temperatures ranging from 20 to 35°C during winter and summer acclimatization. Oxygen consumption (ml g−1 h−1) decreased with increasing mass at each temperature. The intraspecific exponents of body mass in relation to metabolic rate ranged from 0.62 to 0.79. Winter-acclimatized geckos had significantly lower metabolic rates than summer-acclimatized geckos at different temperatures, especially at low temperature (20°C). The pattern of acclimatization exhibited by P. hasselquistii may conserve energy during inactivity in winter and make activity more easily achieved during active seasons.  相似文献   

2.
Metabolic rates of lizards, Sceloporus undulatus, differed between acclimated and acclimatized individuals. Oxygen consumption of field acclimatized Sceloporus undulatus peaked during the early morning and afternoon and was highest overall during spring. Oxygen consumption in the summer was similar to that in the fall. Laboratory acclimated animals collected during spring exhibited significantly lower rates of oxygen consumption than acclimatized individuals. Rates were similar in summer. Oxygen consumption did not vary between spring and summer for acclimated animals. Activity season maintenance costs of adult males based on field body temperatures and seasonal measurements of metabolic rates of acclimatized lizards (23.8 kJ/g) were higher than maintenance costs computed with data for summer lizards (20.6 kJ/g; a difference of 13.4%) and acclimated lizards (15.6 kJ/g; a difference of 34.5%).  相似文献   

3.
Abstract

The resting metabolic rate (RMR) of Hemidactylus flaviviridis was measured at different temperatures from 20 to 35°C during winter and summer acclimatization. The mass exponent b values ranged between 0.67 and 0.72. Winter-acclimatized geckos of various body masses had significantly lower RMRs than summer-acclimatized geckos only at 20°C. It seems that low thermal sensitivity for summer–acclimatized group may facilitate activity during its active seasons, and high thermal sensitivity between 20 and 25°C for winter–acclimatized group may conserve energy during inactivity in winter.  相似文献   

4.
The gecko Oedura marmorata was studied in two different climatic zones: the arid zone of central Australia and in the wet-dry tropics of northern Australia. Doubly labelled water was used to measure field metabolic rate (FMR) and water flux rates of animals in the field during the temperate seasons of spring, summer and winter, and during the tropical wet and dry seasons. FMRs were highest in the tropical wet season and lowest in the temperate winter. The geckos in central Australia expended less energy than predicted for a similarly sized iguanid lizard, but geckos from the tropics expended about the same amount of energy as predicted for an iguanid. Water flux rates of geckos from the arid zone were extremely low in all seasons compared to other reptiles, and although water flux was higher in tropical geckos, the rates were low compared to other tropical reptiles. The standard metabolic rates (SMRs) of geckos were similar between the two regions and among the seasons. Geckos selected higher body temperatures (T bs) in a laboratory thermal gradient in the summer (33.5°C) and wet (33.8°C) seasons compared to the winter (31.7°C) and dry (31.4°C) seasons. The mean T bs selected in the laboratory thermal gradient by geckos from the two regions were not different at a given time of year. The energy expended during each season was partitioned into components of resting metabolism, T b and activity. Most of the energy expended by geckos from central Australia could be attributed to the effects of temperature on resting lizards in all three seasons, but the energy expended by tropical geckos includes a substantial component due to activity during both seasons. This study revealed variability in patterns of ecological energetics between populations of closely related geckos, differences which cannot be entirely attributed to seasonal or temperature effects. Received: 14 November 1997 / Accepted: 4 May 1998  相似文献   

5.
The balance between energetic acquisition and expenditure depends on the amount of energy allocated to biological functions such as thermoregulation, growth, reproduction and behavior. Ambient temperature has a profound effect on this balance, with species inhabiting colder climates often needing to invest more energy in thermoregulation to maintain body temperature. This leads to local behavioral and physiological adaptations that increase energetic efficiency. In this study, we investigated the role of activity, behavior and thermogenic capacity in the ability of the greater white-toothed shrew, Crocidura russula, to cope with seasonal changes. Individuals were captured in the Sintra-Cascais Natural Park, a Mediterranean region, and separated into three experimental groups: a control group, acclimated to a 12L:12D photoperiod and temperature of 18–20 °C; a winter group, acclimatized to natural winter fluctuations of light and temperature; and a summer group, acclimatized to natural summer fluctuations of light and temperature. No differences were found in resting metabolic rate and nonshivering thermogenesis between the three groups. However, winter shrews significantly reduced their activity, particularly at night, compared to the control and summer groups. Differences in torpor use were also found between groups, with winter shrews entering torpor more frequently and during shorter periods of time than summer and control shrews. Our results indicate C. russula from Sintra relies on the flexibility of energy saving mechanisms, namely daily activity level and torpor use, to cope with seasonal changes in a Mediterranean climate, rather than mechanisms involving body heat production.  相似文献   

6.
This study compares the thermal ecology of male bearded dragon lizards (Pogona barbata) from south-east Queensland across two seasons: summer (1994–1995) and autumn (1995). Seasonal patterns of body temperature (T b) were explored in terms of changes in the physical properties of the thermal environment and thermoregulatory effort. To quantify thermoregulatory effort, we compared behavioral and physiological variables recorded for observed lizards with those estimated for a thermoconforming lizard. The study lizards' field T bs varied seasonally (summer: grand daily mean (GDM) 34.6 ± 0.6°C, autumn: GDM 27.5 ± 0.3°C) as did maximum and minimum available operative temperatures (summer: GDM T max 42.1 ± 1.7°C, T min 32.2 ± 1.0°C, autumn: GDM T max 31.7 ± 1.2°C, T min 26.4 ± 0.5°C). Interestingly, the range of temperatures that lizards selected in a gradient (selected range) did not change seasonally. However, P. barbata thermoregulated more extensively and more accurately in summer than in autumn; lizards generally displayed behaviors affecting heat load nonrandomly in summer and randomly in autumn, leading to the GDM of the mean deviations of lizards' field T bs from their selected ranges being only 2.1 ± 0.5°C in summer, compared to 4.4 ± 0.5°C in autumn. This seasonal difference was not a consequence of different heat availability in the two seasons, because the seasonally available ranges of operative temperatures rarely precluded lizards from attaining field T bs within their selected range, should that have been the goal. Rather, thermal microhabitat distribution and social behavior appear to have had an important influence on seasonal levels of thermoregulatory effort. Received: 28 April 1997 / Accepted: 29 December 1997  相似文献   

7.
We acclimated adults of Takydromus septentrionalis (northern grass lizard) from four localities (populations) under identical thermal conditions to examine whether local thermal conditions have a fixed influence on thermal preference and thermal tolerance in the species. Selected body temperature (Tsel), critical thermal minimum (CTMin), and critical thermal maximum (CTMax) did not differ between sexes and among localities in lizards kept under identical laboratory conditions for ∼5 months, and the interaction effects between sex and locality on these measures were not significant. Lizards acclimated to the three constant temperatures (20, 25, and 35°C) differed in Tsel, CTMin, and CTMax. Tsel, CTMin, and CTMax all shifted upward as acclimation temperature increased, with Tsel shifting from 32.0 to 34.1°C, CTMin from 4.9 to 8.0°C, and CTMax from 42.0 to 44.5°C at the change-over of acclimation temperature from 20 to 35°C. Lizards acclimated to the three constant temperatures also differed in the range of viable body temperatures; the range was widest in the 25°C treatment (38.1°C) and narrowest in the 35°C treatment (36.5°C), with the 20°C treatment in between (37.2°C). The results of this study show that local thermal conditions do not have a fixed influence on thermal preference and thermal tolerance in T. septentrionalis.  相似文献   

8.
Experiments performed under controlled conditions showed that level of PPFD (photosynthetic photon flux density) during early seedlings growth (preceding cold acclimation at +2 °C) was not the key factor for the development of frost resistance. It did not modify the beneficial effects of prehardening (Rapacz 1997, in this issue) at moderately low (+12 °C) day temperature. Now I have shown that the increase of PPFD may replace to some extent prehardening in the development of frost resistance. It was particularly seen in non-prehardened plants, which had been grown under warm-day (+20 °C) conditions. Prehardening performed under controlled conditions, as well as seedlings growth under natural autumn conditions in the field, allowed to maintain a high net-photosynthesis rate at chilling temperatures. A net-photosynthesis rate during cold acclimation at +2 °C corresponded well with higher frost resistance. As a result, seedlings non subjected to prehardening and grown before cold acclimation under low PPFD acclimated better, if the cold treatment was applied only at nights (+20/2 °C day/night). Only under such conditions the photosynthetic rate was sufficiently high to allow plants to reach a higher level of frost resistance. All other plants acclimated better when they were exposed to the hardening temperature continuously during days and nights (+2/2 °C day/night).  相似文献   

9.
The effect of the acclimation temperature on the temperature tolerance ofPorphyra leucosticta, and on the temperature requirements for growth and survival ofEnteromorpha linza was determined under laboratory conditions. Thalli ofP. leucosticta (blade or Conchocelis phases), acclimated to twenty-five degrees, survived up to 30°C, i.e. 2°C more than those acclimated to 15°C which survived up to 28°C. Lower temperature tolerance of bothPorphyra phases that were acclimated to 15°C was −1°C after an 8-week exposure time at the experimental temperatures. The upper temperature tolerance ofE. linza also increased by 2°C, i.e. from 31 to 33°C, when it was acclimated to 30°C instead of 15°C. The lower temperature tolerance increased from 1 to −1°C, when it was acclimated to 5°C instead of 15°C.E. linza thalli acclimated for 4 weeks to 5 or 10°C reached their maximum growth at 15°C, i.e. at a 5°C lower temperature than those acclimated to 15 or 30°C. These thalli achieved higher growth rates in percent of maximal growth at low temperatures than those acclimated to 15 or 30°C. Thalli acclimated for 1 week to 5°C reached their maximum growth rate at 20°C and achieved growth rates at low temperatures similar to those recorded for thalli acclimated to 15°C. Thalli ofE. linza acclimated for 4 weeks to 5°C lost this acclimation after being post-cultivated for the same period at 15°C. That was not the case with thalli acclimated for 8 weeks to 5°C and post-acclimated for 4 weeks to 15°C. These thalli displayed similar growth patterns at 10–25°C, while a decline of growth rate was observed at 5 or 30°C. The significance of the acclimation potential ofE. linza with regard to its seasonality in the Gulf of Thessaloniki, and its distribution in the N Atlantic, is also discussed.  相似文献   

10.
Olive trees must be exposed to a period of winter chilling temperatures in order to form inflorescences the following spring. The effects of diurnally fluctuating and constant temperatures on flower induction and sex expression in the olive were compared under controlled environment conditions. The effect on flowering of diurnally fluctuating temperatures depends upon the length of time at the higher temperatures. While daily exposure to the high temperatures (21° to 26°C) for a short period (four hours) intensified the effectiveness of the low temperatures (7° to 12.5°C), when the high temperature duration was 12 hours it counteracted the low temperature action. Possibly, daily low temperatures act to stimulate reactions leading to floral hormone synthesis, while daily short exposures to high temperatures act to maintain metabolic activity, promote energy-yielding reactions, and possibly stimulate cell-division activity. In the olive, an intermediate constant temperature (12.5°C) favors both types of reactions and induces flowering; however, in this case, the pistils fail to develop. The olive has very specific temperature requirements for flowering and neither the mean temperature nor the accumulated number of hours below a given value, e.g. 7°C, adequately characterizes these requirements.  相似文献   

11.
The oxygen consumption of temperature acclimated mummichogs, Fundulus heteroclitus (L.) weighing ≈0.1–10.0 g, was measured at 5, 13, 21, and 29 C. Between 13 and 21°C and 21 and 29°C, the values of Q10 were 1.55 and 1.04, respectively, indicating relative thermal independence of respiratory metabolic rate over this 16°C range (Q10 = 1.27). This range encompasses the normal late spring, summer, and early fall range of habitat temperature in Maine estuaries, so that mummichogs are able to grow and reproduce relatively independent of environmental temperature. Between 5 and 13°C, respiratory metabolism is very temperature sensitive (Q10 = 4.42) indicating a substantial reduction of metabolic processes at low temperatures. This enables mummichogs to conserve any metabolic reserves during the coldest months. The regression of log weight-specific oxygen consumption on log body weight was determined at each experimental temperature. All had significantly negative slopes indicating the importance of body size in mummichog respiration.  相似文献   

12.
1. Thyroid activity was examined in the lizard, Trachydosaurus rugosus, the tortoise Chelodina longicollis and the crocodile, Crocodylus johnstoni, acclimated to 20-22 degrees C and 30-32 degrees C. Thyroidal uptake and release of 125I, plasma concentrations of T3 and T4 were measured as was resting oxygen consumption (at 30 degrees C) before and after both thyroidectomy and thyroxine injections. 2. All three species showed 125I uptake at both temperatures and showed no thyroidal release of 125I at 20-22 degrees C but exhibited thyroidal release of 125I (and presumably hormone secretion) at 30-32 degrees C. 3. Plasma concentrations of thyroxine ranged from 0.55 nM to 3.24 nM and triiodothyronine from 0.14 nM to 0.51 nM. 4. Neither thyroidectomy nor thyroxine injections had any effect on metabolic rate in 20-22 degrees C acclimated lizards. Thyroidectomy resulted in a significant decrease in metabolic rate in 30-32 degrees C acclimated lizards and tortoises and thyroxine injections resulted in significant increases in metabolism in 30-32 degrees C acclimated lizards, tortoises and crocodiles. 5. A comparison of thyroid parameters in reptiles and mammals concluded that although the reptilian thyroid is active at high temperatures it is still considerably less active than it is in mammals.  相似文献   

13.
The effect of 21 days of starvation, followed by a period of compensatory growth during refeeding, was studied in juvenile roach Rutilus rutilus during winter and summer, at 4, 20 and 27° C acclimation temperature and at a constant photoperiod (12L : 12D). Although light conditions were the same during summer and winter experiments and fish were acclimated to the same temperatures, there were significant differences in a range of variables between summer and winter. Generally winter fish were better prepared to face starvation than summer fish, especially when acclimated at a realistic cold season water temperature of 4° C. In winter, the cold acclimated fish had a two to three‐fold larger relative liver size with an approximately double fractional lipid content, in comparison to summer animals at the same temperature. Their white muscle protein and glycogen concentration, but not their lipid content, were significantly higher. Season, independent of photoperiod or reproductive cycle, was therefore an important factor that determined the physiological status of the animal, and should generally be taken into account when fish are acclimated to different temperature regimes. There were no significant differences between seasons with respect to growth. Juvenile roach showed compensatory growth at all three acclimation temperatures with maximal rates of compensatory growth at 27° C. The replenishment of body energy stores, which were utilized during the starvation period, was responsible for the observed mass gain at 4° C. The contribution of the different energy resources (protein, glycogen and lipid) was dependent on acclimation temperature. In 20 and 27° C acclimated roach, the energetic needs during food deprivation were met by metabolizing white muscle energy stores. While the concentration of white muscle glycogen had decreased after the fasting period, the concentrations of white muscle lipid and protein remained more or less constant. The mobilization of protein and fat was revealed by the reduced size of the muscle after fasting, which was reflected in a decrease in condition factor. At 20° C, liver lipids and glycogen were mobilized, which caused a decrease both in the relative liver size and in the concentration of these substrates. Liver size was also decreased after fasting in the 4° C acclimated fish, but the substrate concentrations remained stable. This experimental group additionally utilized white muscle glycogen during food deprivation. Almost all measured variables were back at the control level within 7 days of refeeding.  相似文献   

14.
The reddish-gray mouse lemur (Microcebus griseorufus) is one of only a few small mammals inhabiting the spiny forest of southwestern Madagascar. In this study we investigated the physiological adjustments which allow these small primates to persist under the challenging climatic conditions of their habitat. To this end we measured energy expenditure (metabolic rate) and body temperature of 24 naturally acclimatized mouse lemurs, kept in outdoor enclosures, during different seasons (summer, winter, and the transition period between the two seasons). Mouse lemurs displayed two main physiological strategies to compensate seasonal and diurnal fluctuations of ambient temperature. On the one hand, individuals entered hypometabolism with decreasing ambient temperature (T a) during the transition period and winter, enabling them to save up to 21 % energy per day (92 % per hour) compared with the normal resting metabolic rate at comparable T a. On the other hand, euthermic mouse lemurs also showed physiological adjustments to seasonality when resting: the lower critical temperature of the thermoneutral zone decreased from summer to winter by 7.5 °C, which allowed mouse lemurs to keep energy demands constant despite colder T as during winter. In addition, the basal metabolic rate was substantially lowered prior to the winter period, which facilitated accumulation of fat reserves. The combination of physiological modifications during euthermia in addition to hypometabolism, which can be individually adjusted according to external parameters and respective body condition, is important as it allows M. griseorufus to cope with the environmental variability of an energetically challenging habitat.  相似文献   

15.
Body temperatures, standard and resting metabolism and diel activity patterns were determined in Garthia gaudichaudi, a small ( < 1g) gecko inhabiting a Chilean semi-arid region. Field body temperatures were significantly higher when lizards were inactive during the day than when active at night. In the laboratory, preferred temperatures during scotophase were considerably lower than those selected during the photophase, even when high temperatures were continuously available. Activity patterns appear to be better correlated with the photoperiod than with ambient temperatures (16–40°C). Under a 12:12 LD photoperiod, 92% of the total daily activity was carried out during darkness. Standard and resting metabolic rates were lower than those predicted for most squamate reptiles of similar size, but appear to be within the ranges reported for other nocturnal xeric geckos.  相似文献   

16.
Abstract This study examined how the standard metabolic rate of tegu lizards, a species that undergoes large ontogenetic changes in body weight with associated changes in life-history traits, is affected by changes in body mass, body temperature, season, and life-history traits. We measured rates of oxygen consumption (Vo(2)) in 90 individuals ranging in body mass from 10.4 g to 3.75 kg at three experimental temperatures (17 degrees , 25 degrees , and 30 degrees C) over the four seasons. We found that standard metabolic rate scaled to the power of 0.84 of body mass at all experimental temperatures in all seasons and that thermal sensitivity of metabolism was relatively low (Q(10) approximately 2.0-2.5) over the range from 17 degrees to 30 degrees C regardless of body size or season. Metabolic rates did vary seasonally, being higher in spring and summer than in autumn and winter at the same temperatures, and this was true regardless of animal size. Finally, in this study, the changes in life-history traits that occurred ontogenetically were not accompanied by significant changes in metabolic rate.  相似文献   

17.
Copepods normally swim by rhythmically beating the cephalic limbs, so records of antennal movements represent their activity. The limb beat rate of Temora longicornis Müller was determined in relation to several factors. There was an inverse relationship between swimming rate and body size, and activity increased with environmental temperature up to 20–25°C. Copepods readily acclimated, as those kept at 15°C were less active than those kept at 5°C. The summer population was also less active in the low temperature range, but swimming reached a higher rate at higher temperatures than were tolerated by the winter population. No difference in rate of limb beat was found between similar sized males and females over a wide range of temperatures.  相似文献   

18.
Metabolic rates of four resting, post-absorptive male adult summer- and winter-adapted captive arctic foxes (Alopex lagopus) were recorded. Basal metabolic rates (BMR) varied seasonally with a 36% increase from winter to summer, while body mass was reduced by 17% in the same period. The lower critical temperature (T 1c) of the winter-adapted arctic fox was estimated to −7°C, whereas T lc during summer was 5°C. The similarity of these values, which are much higher than hitherto assumed (e.g. Scholander et al. 1950b), is mainly due to a significantly (P<0.05) lower BMR in winter than in summer. Body core (stomach) temperature was stable, even at ambient temperatures as low as −45°C, but showed a significant (P<0.05) seasonal variation, being lower in winter (39.3±0.33°C) than in summer (39.8±0.16°C). The thermal conductivity of arctic fox fur was the same during both seasons, whereas the thermal conductance in winter was lower than in summer. This was reflected in an increase in fur thickness of 140% from summer to winter, and in a reduced metabolic response to ambient temperatures below T lc in winter. Another four arctic foxes were exposed to three periods of forced starvation, each lasting 8 days during winter, when body mass is in decline. No significant reduction in mass specific BMR was observed during the exposure to starvation, and respiratory quotient was unchanged at 0.73±0.02 during the first 5 days, but dropped significantly (P<0.05) to 0.69±0.03 at day 7. Locomotor activity and body core (intraperitoneal) temperature was unaltered throughout the starvation period, but body mass was reduced by 18.5±2.1% during these periods. Upon re-feeding, locomotor activity was significantly (P<0.05) reduced for about 6 days. Energy intake was almost doubled, but stabilised at normal levels after 11 days. Body mass increased, but not to the level before the starvation episodes. Instead, body mass increased until it reached the reduced body mass of ad libitum fed control animals. This indicates that body mass in the arctic fox is regulated according to a seasonally changing set point.  相似文献   

19.
Abstract. Eretmocerus eremicus is a parasitoid wasp that is not native to Britain. It is a biological control agent of glasshouse whitefly and has recently been released under licence in Britain for the first time. This study assessed the effect of low temperature on the outdoor establishment potential of E. eremicus in Britain. The developmental threshold calculated by three linear methods was between 6.1° and 11.6 °C, with a degree‐day requirement per generation between 256.3 and 366.8° day?1. The supercooling points of non‐acclimated and acclimated larvae were similar (approximately ?25 °C). Non‐acclimated and acclimated larvae were subject to considerable pre‐freeze mortality, with lethal temperature (LTemp50) values of ?16.3 and ?21.3 °C, respectively. Lethal time experiments indicated a similar lack of cold tolerance with 50% mortality of both non‐acclimated and acclimated larvae after 7 days at ?5 °C, 10 days at 0 °C and 13 days at 5 °C. Field trials showed that neither non‐acclimated nor acclimated larvae survived longer than 1 month when exposed to naturally fluctuating winter temperatures. These results suggest that releasing E. eremicus into British greenhouses would pose minimal risk because typical British winter temperatures would be an effective barrier against establishment in the wild.  相似文献   

20.
Wrasse used as cleaner fish with farmed Atlantic salmon Salmo salar can be subjected to large and rapid temperature and salinity fluctuations in late autumn and early winter, when summer-warmed surface water is affected by early snowmelt episodes. Because of their containment in sea cages, wrasse which are essentially acclimated to summer temperatures may be rapidly exposed to winter conditions. Short-term tolerance of low temperature and low salinity by three species of wrasse, goldsinny Ctenolabrus rupestris rock cook Centrolabrus exoletus corkwing Crenilabrus melops caught during the summer, and winter-caught corkwing, was investigated. A 3–day period at 30 or 32‰ salinity and temperature 8, 6 or 4° C (for summer-caught fish; 4° C only for winter-caught) was followed by a decline in salinity to 24, 16 or 8‰ over c. 36 h, followed by a further 24 h at these salinities held constant, at each of the three temperatures. Controls in 30 or 32‰ were maintained at 8, 6 or 4° C. Mortality of summer-caught corkwing and rock cook was high at 4° C, whereas the influence of salinity on mortality was small. Mortality of goldsinny was low or zero in all treatments. Surviving corkwing and rock cook after 3 days at 4° C and 32‰ salinity had elevated plasma osmolality: in summer-caught corkwing, plasma [Cl°] and [Na+] were high, whereas in rock cook only [Na+] was high. Haematocrit was low in summer-caught corkwing, high in rock cook. In survivors of all three species at the end of the experiment, values of all these parameters were comparable with those of fish at the beginning of the experiment, except that survivors at low salinity (8, 16‰) had low plasma osmolality, at all temperatures, and in surviving rock cook in these treatments haematocrit was high and plasma [Cl?] was low. Winter-caught corkwing had higher osmolality, [Na+] and [Cl?] than summer-caught corkwing; there was no difference in haematocrit. Survival of wintercaught corkwing exposed to four salinities at 4° C was much higher than that of summercaught corkwing under the same conditions. Little change in blood physiology was recorded for winter-caught corkwing, with only fish subjected to 8‰ and 4° C showing signs of osmoregulatory stress. The interspecific and seasonal differences in survival and blood physiology at low temperature and low salinity are discussed in relation to wrasse survival over winter, both in the field and in salmon farms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号