首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PTPMT1 was the first protein tyrosine phosphatase found localized to the mitochondria, but its biological function was unknown. Herein, we demonstrate that?whole body deletion of Ptpmt1 in mice leads to embryonic lethality, suggesting an indispensable role for PTPMT1 during development. Ptpmt1 deficiency in mouse embryonic fibroblasts compromises mitochondrial respiration and results in abnormal mitochondrial morphology. Lipid analysis of Ptpmt1-deficient fibroblasts reveals an accumulation of phosphatidylglycerophosphate (PGP) along with a concomitant decrease in phosphatidylglycerol. PGP is an essential intermediate in the biosynthetic pathway of cardiolipin, a mitochondrial-specific phospholipid regulating the membrane integrity and activities of the organelle. We further demonstrate that PTPMT1 specifically dephosphorylates PGP in?vitro. Loss of PTPMT1 leads to dramatic diminution of cardiolipin, which can be partially reversed by the expression of catalytic active PTPMT1. Our study identifies PTPMT1 as the mammalian PGP phosphatase and points to its role as a regulator of cardiolipin biosynthesis.  相似文献   

2.
Cardiolipin is a glycerophospholipid found predominantly in the mitochondrial membranes of eukaryotes and in bacterial membranes. Cardiolipin interacts with protein complexes and plays pivotal roles in cellular energy metabolism, membrane dynamics, and stress responses. We recently identified the mitochondrial phosphatase, PTPMT1, as the enzyme that converts phosphatidylglycerolphosphate (PGP) to phosphatidylglycerol, a critical step in the de novo biosynthesis of cardiolipin. Upon examination of PTPMT1 evolutionary distribution, we found a PTPMT1-like phosphatase in the bacterium Rhodopirellula baltica. The purified recombinant enzyme dephosphorylated PGP in vitro. Moreover, its expression restored cardiolipin deficiency and reversed growth impairment in a Saccharomyces cerevisiae mutant lacking the yeast PGP phosphatase, suggesting that it is a bona fide PTPMT1 ortholog. When ectopically expressed, this bacterial PGP phosphatase was localized in the mitochondria of yeast and mammalian cells. Together, our results demonstrate the conservation of function between bacterial and mammalian PTPMT1 orthologs.  相似文献   

3.
We previously performed an RNA interference (RNAi) screen and found that the knockdown of the catalytically inactive phosphatase, MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine/threonine/tyrosine-binding protein], resulted in potent chemoresistance. Our follow-up studies demonstrated that knockdown of MK-STYX prevents cells from undergoing apoptosis through a block in cytochrome c release, but that MK-STYX does not localize proximal to the molecular machinery currently known to control this process. In an effort to define its molecular mechanism, we utilized an unbiased proteomics approach to identify proteins that interact with MK-STYX. We identified the mitochondrial phosphatase, PTPMT1 (PTP localized to mitochondrion 1), as the most significant and unique interaction partner of MK-STYX. We previously reported that knockdown of PTPMT1, an important component of the cardiolipin biosynthetic pathway, is sufficient to induce apoptosis and increase chemosensitivity. Accordingly, we hypothesized that MK-STYX and PTPMT1 interact and serve opposing functions in mitochondrial-dependent cell death. We confirmed that MK-STYX and PTPMT1 interact in cells and, importantly, found that MK-STYX suppresses PTPMT1 catalytic activity. Furthermore, we found that knockdown of PTPMT1 resensitizes MK-STYX knockdown cells to chemotherapeutics and restores the ability to release cytochrome c. Taken together, our data support a model in which MK-STYX controls apoptosis by negatively regulating PTPMT1. Given the important role of PTPMT1 in the production of cardiolipin and other phospholipids, this raises the possibility that dysregulated mitochondrial lipid metabolism may facilitate chemoresistance.  相似文献   

4.
Cribbs JT  Strack S 《EMBO reports》2007,8(10):939-944
Opposing mitochondrial fission and fusion reactions determine the shape and interconnectivity of mitochondria. Dynamin-related protein 1 (Drp1) is an ancient mechanoenzyme that uses GTP hydrolysis to power the constriction and division of mitochondria. Although Drp1-mediated mitochondrial fragmentation is recognized as an early event in the apoptotic programme, acute regulation of Drp1 activity is poorly understood. Here, we identify a crucial phosphorylation site that is conserved in all metazoan Drp1 orthologues. Ser 656 is phosphorylated by cyclic AMP-dependent protein kinase and dephosphorylated by calcineurin, and its phosphorylation state is controlled by sympathetic tone, calcium levels and cell viability. Pseudophosphorylation of Drp1 by mutation of Ser 656 to aspartic acid leads to the elongation of mitochondria and confers resistance to various pro-apoptotic insults. Conversely, the constitutively dephosphorylated Ser656Ala mutant Drp1 promotes mitochondrial fragmentation and increases cell vulnerability. Thus, Drp1 phosphorylation at Ser 656 provides a mechanism for the integration of cAMP and calcium signals in the control of mitochondrial shape, apoptosis and other aspects of mitochondrial function.  相似文献   

5.
Pagliarini et al (2005) recently identified a new mitochondrial specific protein tyrosine phosphatase, PTPMT1. This report comments on its consequences for mitochondrial function and on its potential to act as a therapeutic target in diabetes and cancer.  相似文献   

6.
7.
This study examines the role of c- jun N-terminal kinase (JNK) in mitochondrial signaling and bioenergetics in primary cortical neurons and isolated rat brain mitochondria. Exposure of neurons to either anisomycin (an activator of JNK/p38 mitogen-activated protein kinases) or H2O2 resulted in activation (phosphorylation) of JNK (mostly p46JNK1) and its translocation to mitochondria. Experiments with mitochondria isolated from either rat brain or primary cortical neurons and incubated with proteinase K revealed that phosphorylated JNK was associated with the outer mitochondrial membrane; this association resulted in the phosphorylation of the E subunit of pyruvate dehydrogenase, a key enzyme that catalyzes the oxidative decarboxylation of pyruvate and that links two major metabolic pathways: glycolysis and the tricarboxylic acid cycle. JNK-mediated phosphorylation of pyruvate dehydrogenase was not observed in experiments carried out with mitoplasts, thus suggesting the requirement of intact, functional mitochondria for this effect. JNK-mediated phosphorylation of pyruvate dehydrogenase was associated with a decline in its activity and, consequently, a shift to anaerobic pyruvate metabolism: the latter was confirmed by increased accumulation of lactic acid and decreased overall energy production (ATP levels). Pyruvate dehydrogenase appears to be a specific phosphorylation target for JNK, for other kinases, such as protein kinase A and protein kinase C did not elicit pyruvate dehydrogenase phosphorylation and did not decrease the activity of the complex. These results suggest that JNK mediates a signaling pathway that regulates metabolic functions in mitochondria as part of a network that coordinates cytosolic and mitochondrial processes relevant for cell function.  相似文献   

8.
目的:研究HepG2细胞中线粒体形状动态变化过程中的功能变化及其初步分子机制。方法:HepG2细胞经过HBSS缓冲液饥饿处理后,使用线粒体氧化磷酸化解偶联剂CCCP、脂肪酸受体GPR40/120激动剂GW9508、脂肪酸油酸OA和钙离子载体Ionomycin等4种不同药物处理,通过共聚焦显微镜观察和流式细胞分析的手段检测细胞中线粒体形状和功能发生的改变。然后,通过基因沉默Drp1,Mff或者Fis1蛋白,初步研究调控线粒体形状改变的分子机制。结果:经过CCCP和GW9508处理细胞中产生甜甜圈线粒体,而OA和Ionomycin处理产生球状线粒体。CCCP,OA和Ionomycin使线粒体去极化,CCCP、GW9508、OA或者Ionomycin单独处理在一定程度上影响细胞中活性氧化簇ROS。甜甜圈线粒体产生由Drp1介导,而球状线粒体形成依赖于Drp1和Mff。结论:线粒体的形态与其功能相互联系,Drp1和Mff蛋白对于细胞线粒体形状动态改变过程中形状的调整和适应具有很重要的作用。  相似文献   

9.

Background

Mitochondrial dysfunctions appear strongly implicated in a wide range of pathologies. Therefore, there is a growing need in the determination of the normal and pathological integrated response of oxidative phosphorylation to cellular ATP demand. The present study intends to address this issue by providing a method to investigate mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria.

Methodology/Principal Findings

The proposed method is based on the simultaneous monitoring of substrate oxidation (determined polarographically) and phosphorylation (determined using the glucose - hexokinase - glucose-6-phosphate dehydrogenase - NADP+ enzymatic system) rates, coupled to the determination of actual ADP and ATP concentrations by bioluminescent assay. This enzymatic system allows the study of oxidative phosphorylation during true steady states in a wide range of ADP concentrations. We demonstrate how the application of this method allows an accurate determination of mitochondrial affinity for ADP from both oxidation (KmVox) and phosphorylation (KmVp) rates. We also demonstrate that determination of KmVox leads to an important overestimation of the mitochondrial affinity for ADP, indicating that mitochondrial affinity for ADP should be determined using phosphorylation rate. Finally, we show how this method allows the direct and precise determination of the mitochondrial coupling efficiency. Data obtained from rat skeletal muscle and liver mitochondria illustrate the discriminating capabilities of this method.

Conclusions/Significance

Because the proposed method allows the accurate determination of mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria, it also opens the route to a better understanding of functional consequences of mitochondrial adaptations/dysfunctions arising in various physiological/pathophysiological conditions.  相似文献   

10.
Mitochondria are crucial for numerous cellular processes, yet the regulation of mitochondrial functions is only understood in part. Recent studies indicated that the number of mitochondrial phosphoproteins is higher than expected; however, the effect of reversible phosphorylation on mitochondrial structure and function has only been defined in a few cases. It is thus crucial to determine authentic protein phosphorylation sites from highly purified mitochondria in a genetically tractable organism. The yeast Saccharomyces cerevisiae is a major model organism for the analysis of mitochondrial functions. We isolated highly pure yeast mitochondria and performed a systematic analysis of phosphorylation sites by a combination of different enrichment strategies and mass spectrometry. We identified 80 phosphorylation sites in 48 different proteins. These mitochondrial phosphoproteins are involved in critical mitochondrial functions, including energy metabolism, protein biogenesis, fatty acid metabolism, metabolite transport, and redox regulation. By combining yeast genetics and in vitro biochemical analysis, we found that phosphorylation of a serine residue in subunit g (Atp20) regulates dimerization of the mitochondrial ATP synthase. The authentic phosphoproteome of yeast mitochondria will represent a rich source to uncover novel roles of reversible protein phosphorylation.  相似文献   

11.
The transfer of cholesterol to mitochondria, which might involve the phosphorylation of proteins, is the rate-limiting step in human placental steroidogenesis. Protein kinase A (PKA) activity and its role in progesterone synthesis by human placental mitochondria were assessed in this study. The results showed that PKA and phosphotyrosine phosphatase D1 are associated with syncytiotrophoblast mitochondrial membrane by an anchoring kinase cAMP protein-121. The 32P-labeled of four major proteins was analyzed. The specific inhibitor of PKA, H89, decreased progesterone synthesis in mitochondria while in mitochondrial steroidogenic contact sites protein-phosphorylation was diminished, suggesting that PKA plays a role in placental hormone synthesis. In isolated mitochondria, PKA activity was unaffected by the addition of cAMP suggesting a constant activity of this kinase in the syncytiotrophoblast. The presence of PKA and phosphotyrosine phosphatase D1 anchored to mitochondria by an anchoring kinase cAMP protein-121 indicated that syncytiotrophoblast mitochondria contain a full phosphorylation/dephosphorylation system.  相似文献   

12.
The effect of common intracellular signals (Ca2+ and cAMP) on the activity of protein phosphorylation in mitochondria was investigated in coleoptiles of maize (Zea mays L.). Treatment of isolated mitochondria with 2 mM CaCl2 brought about an increase in the level of phosphorylation of proteins with mol ws of 74, 60, and 33 kD but considerably reduced phosphorylation of the protein with a mol wt of 51.5 kD. In the presence of Ca2+, phosphorylation of polypeptides with mol wts of 59 and 66 kD was also detected. cAMP considerably reduced phosphorylation of essentially all the investigated proteins in isolated mitochondria, which could be explained by activation of their dephosphorylation. Phosphorylation of mitochondrial proteins involves a polypeptide of about 94 kD showing kinase activity, which may be proper protein kinase or one of the subunits of a compound structure. In maize mitochondria, PP1A phosphatases were found. A hypothesis was advanced that redox-dependent phosphorylation/dephosphorylation of mitochondrial proteins plays an important role in mitochondrial signaling in higher plants.  相似文献   

13.
Cardiolipin, a phospholipid component of the inner mitochondrial membrane, is required for mitochondrial metabolism. In this issue, Zhang et?al. (2011) highlight a critical role for PTPMT1, a mitochondrial phosphatase, in cardiolipin biogenesis and possibly in cardiolipin deficiency diseases. Their findings also unveil a yet uncharacterized pathway affecting cell growth.  相似文献   

14.
The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin''s ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved.  相似文献   

15.
Pancreatic β-cell death in type 2 diabetes has been related to p53 subcellular localisation and phosphorylation. However, the mechanisms by which p53 is phosphorylated and its activation in response to oxidative stress remain poorly understood. Therefore, the aim of this study was to investigate mitochondrial p53 phosphorylation, its subcellular localisation and its relationship with apoptotic induction in RINm5F cells cultured under high glucose conditions. Our results show that p53 phosphorylation in the mitochondrial fraction was greater at ser392 than at ser15. This increased phosphorylation correlated with an increase in reactive oxygen species, a decrease in the Bcl-2/Bax ratio, a release of cytochrome c and an increase in the rate of apoptosis. We also observed a decline in ERK 1/2 phosphorylation over time, which is an indicator of cell proliferation. To identify the kinase responsible for phosphorylating p53, p38 mitogen-activated protein kinase (MAPK) activation was analysed. We found that high glucose induced an increase in p38 MAPK phosphorylation in the mitochondria after 24–72 h. Moreover, the phosphorylation of p53 (ser392) by p38 MAPK in mitochondria was confirmed by colocalisation studies with confocal microscopy. The addition of a specific p38 MAPK inhibitor (SB203580) to the culture medium during high glucose treatment blocked p53 mobilisation to the mitochondria and phosphorylation; thus, the release of cytochrome c and the apoptosis rate in RINm5F cells decreased. These results suggest that mitochondrial p53 phosphorylation by p38 MAPK plays an important role in RINm5F cell death under high glucose conditions.  相似文献   

16.
Akt activation supports survival of cardiomyocytes against ischemia/reperfusion, which induces cell death through opening of the mitochondrial permeability transition pore (PT-pore). Mitochondrial depolarization induced by treatment of cardiomyocytes with H(2)O(2) is prevented by activation of Akt with leukemia inhibitory factor (LIF). This protective effect is observed even when cardiomyocytes treated with LIF are permeabilized and mitochondrial depolarization is elicited by elevating Ca(2+). Cell fractionation studies demonstrate that LIF treatment increases both total and phosphorylated Akt in the mitochondrial fraction. Furthermore, the association of Akt with HK-II is increased by LIF. HK-II contains consensus sequences for phosphorylation by Akt and LIF treatment induces PI3K- and Akt-dependent HK-II phosphorylation. Addition of recombinant kinase-active Akt to isolated adult mouse heart mitochondria stimulates phosphorylation of HK-II and concomitantly inhibits the ability of Ca(2+) to induce cytochrome c release. This protection is prevented when HK-II is dissociated from mitochondria by incubation with glucose 6-phosphate or HK-II-dissociating peptide. Finally LIF increases HK-II association with mitochondria and dissociation of HK-II from mitochondria attenuates the protective effect of LIF on H(2)O(2)-induced mitochondrial depolarization in cardiomyocytes. We conclude that Akt has a direct effect at the level of the mitochondrion, which is mediated via phosphorylation of HK-II and results in protection of mitochondria against oxidant or Ca(2+)-stimulated PT-pore opening.  相似文献   

17.
Two-photon microscopy of rhodamine 123-labeled mitochondria revealed that mitochondria of neurons cultured from mouse respiratory center form functionally coupled, dynamically organized aggregates such as chains and clusters, while single mitochondria were rarely seen. Mitochondrial chain structures predominate in dendrites, while irregularly shaped mitochondrial clusters are mostly found in the soma. Both types of mitochondrial structures showed chaotic Brownian motions and the mitochondrial chains also revealed well-directed movements. The latter dislocations were arrested upon mitochondrial depolarization or blockade of mitochondrial ATP synthesis. Depolymerization of microtubules by colchicine or nocodazole or inhibition of protein phosphatases by calyculin A disrupted mitochondrial chains and the mitochondria accumulated in the soma. Forskolin and IBMX reversibly blocked directed movements of mitochondria, but did not affect their overall spatial distribution. Thus, protein phosphorylation seems to control both mitochondrial transport and organization. Protein phosphorylation downstream of enhanced cytosolic cAMP levels apparently regulates the transition from motile to non-motile mitochondria, while phosphorylation resulting from inhibition of types 1 and 2A protein phosphatases massively disturbs mitochondrial organization. The complex phosphorylation processes seem to control the close interaction of mitochondria and cytoskeleton which may guarantee that mitochondria are immobilized at energetic hot spots and rearranged in response to changes in local energy demands.  相似文献   

18.
Zhang H  Pommier Y 《Biochemistry》2008,47(43):11196-11203
Mitochondrial DNA (mtDNA) is required for mitochondrial activities because it encodes key proteins for oxidative phosphorylation and the production of cellular ATP. We previously reported the existence of a specific mitochondrial topoisomerase gene, Top1mt, in all vertebrates. The corresponding polypeptide contains an N-terminal mitochondrial targeting sequence and is otherwise highly homologous to the nuclear topoisomerase I (Top1). In this study, we provide biochemical evidence of the presence of an endogenous Top1mt polypeptide in human mitochondria. Using novel antibodies against Top1mt, we detected the corresponding 70 kDa polypeptide in mitochondria but not in nuclear fractions. This polypeptide could be trapped to form covalent complexes with mtDNA when mitochondria from human cells were treated with camptothecin. Mapping of Top1mt sites in the regulatory D-loop region of mtDNA in mitochondria revealed the presence of an asymmetric cluster of Top1mt sites confined to a 150 bp segment downstream from, and adjacent to, the site at which replication is prematurely terminated, generating an approximately 650-base (7S DNA) product that forms the mitochondrial D-loop. Moreover, we show that inhibition of Top1mt by camptothecin reduces the level of formation of the 7S DNA. These results suggest novel roles for Top1mt in regulating mtDNA replication.  相似文献   

19.
Mitochondria accumulate at neuronal and immunological synapses and yeast bud tips and associate with the ER during phospholipid biosynthesis, calcium homeostasis, and mitochondrial fission. Here we show that mitochondria are associated with cortical ER (cER) sheets underlying the plasma membrane in the bud tip and confirm that a deletion in YPT11, which inhibits cER accumulation in the bud tip, also inhibits bud tip anchorage of mitochondria. Time-lapse imaging reveals that mitochondria are anchored at specific sites in the bud tip. Mmr1p, a member of the DSL1 family of tethering proteins, localizes to punctate structures on opposing surfaces of mitochondria and cER sheets underlying the bud tip and is recovered with isolated mitochondria and ER. Deletion of MMR1 impairs bud tip anchorage of mitochondria without affecting mitochondrial velocity or cER distribution. Deletion of the phosphatase PTC1 results in increased Mmr1p phosphorylation, mislocalization of Mmr1p, defects in association of Mmr1p with mitochondria and ER, and defects in bud tip anchorage of mitochondria. These findings indicate that Mmr1p contributes to mitochondrial inheritance as a mediator of anchorage of mitochondria to cER sheets in the yeast bud tip and that Ptc1p regulates Mmr1p phosphorylation, localization, and function.  相似文献   

20.
Hexokinase II (HK-II) is an enzyme that catalyzes the first step in glycolysis and localizes not only in the cytosol but also at mitochondria. Akt, activated by insulin-like growth factor 1 (IGF-1) treatment in neonatal rat ventricular myocytes, translocates to mitochondria and increases mitochondrial HK-II binding. Expression of an HK-II-dissociating peptide diminished IGF-1-induced increases in mitochondrial HK-II as well as protection against hydrogen peroxide treatment, suggesting an important role of mitochondrial HK-II in IGF-1/Akt-mediated protection. We hypothesized, on the basis of an Akt phosphorylation consensus sequence present in HK-II, that Thr-473 is the target of Akt kinase activity. Indeed, recombinant kinase-active Akt robustly phosphorylates WT HK-II, but not Thr-473 mutants. Phosphomimetic (T473D)HK-II, but not non-phosphorylatable (T473A)HK-II, constitutively increased mitochondrial binding compared with WT HK-II and concomitantly confers greater protection against hydrogen peroxide. Glucose 6-phosphate (G-6P), a product of the catalytic activity of HK-II, is well known to dissociate HK-II from mitochondria. Addition of G-6P to isolated mitochondria dose-dependently dissociates WT HK-II, and this response is inhibited significantly in mitochondria isolated from cardiomyocytes expressing T473D HK-II. Pretreatment with IGF-1 also inhibits G-6P-induced overexpressed or endogenous HK-II dissociation, and this response was blocked by Akt inhibition. These results show that Akt phosphorylation of HK-II at Thr-473 is responsible for the Akt-mediated increase in HK-II binding to mitochondria. This increase is, at least in part, due to the decreased sensitivity to G-6P-induced dissociation. Thus, phosphorylation-mediated regulation of mitochondrial HK-II would be a critical component of the protective effect of Akt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号