首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combinatorial phosphotyrosyl (pY) peptide library was screened to determine the amino acid preferences at the pY+4 to pY+6 positions for the four SH2 domains of protein-tyrosine phosphatases SHP-1 and SHP-2. Individual binding sequences selected from the library were resynthesized and their binding affinities and specificities to various SH2 domains were further evaluated by SPR studies, stimulation of SHP-1 and SHP-2 phosphatase activity, and in vitro pulldown assays. These studies reveal that binding of a pY peptide to the N-SH2 domain of SHP-2 is greatly enhanced by a large hydrophobic residue (Trp, Tyr, Met, or Phe) at the pY+4 and/or pY+5 positions, whereas binding to SHP-1 N-SH2 domain is enhanced by either hydrophobic or positively charged residues (Arg, Lys, or His) at these positions. Similar residues at the pY+4 to pY+6 positions are also preferred by SHP-1 and SHP-2 C-SH2 domains, although their influence on the overall binding affinities is much smaller compared with the N-SH2 domains. A structural model was generated to qualitatively interpret the contribution of the pY+4 and pY+5 residues to the overall binding affinity. Examination of pY motifs from known SHP-1 and SHP-2-binding proteins shows that many of the pY motifs contain a hydrophobic or positively charged residue(s) at the pY+4 and pY+5 positions.  相似文献   

2.
The two SH2 (Src homology domain 2) domains present in phospholipase C-gamma1 (PLC-gamma1) were assayed for their capacities to recognize the five autophosphorylation sites in the epidermal growth factor receptor. Plasmon resonance and immunological techniques were employed to measure interactions between SH2 fusion proteins and phosphotyrosine-containing peptides. The N-SH2 domain recognized peptides in the order of pY1173 > pY992 > pY1068 > pY1148 > pY1086, while the C-SH2 domain recognized peptides in the order of pY992 > pY1068 > pY1148 > pY1086 and pY1173. The major autophosphorylation site, pY1173, was recognized only by the N-SH2 domain. Contributions of the N-SH2 and C-SH2 domains to the association of the intact PLC-gamma1 molecule with the activated epidermal growth factor (EGF) receptor were assessed in vivo. Loss of function mutants of each SH2 domain were produced in a full-length epitope-tagged PLC-gamma1. After expression of the mutants, cells were treated with EGF and association of exogenous PLC-gamma1 with EGF receptors was measured. In this context the N-SH2 is the primary contributor to PLC-gamma1 association with the EGF receptor. The combined results suggest an association mechanism involving the N-SH2 domain and the pY1173 autophosphorylation site as a primary event and the C-SH2 domain and the pY992 autophosphorylation site as a secondary event.  相似文献   

3.
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.  相似文献   

4.
The binding properties of Src homology-2 (SH2) domains to phosphotyrosine (pY)-containing peptides have been studied in recent years with the elucidation of a large number of crystal and solution structures. Taken together, these structures suggest a general mode of binding of pY-containing peptides, explain the specificities of different SH2 domains, and may be used to design inhibitors of pY binding by SH2 domain-containing proteins. We now report the crystal structure to 1.8 A resolution of the C-terminal SH2 domain (C-SH2) of the P85alpha regulatory subunit of phosphoinositide 3-kinase (PI3 K). Surprisingly, the carboxylate group of Asp2 from a neighbouring molecule occupies the phosphotyrosine binding site and interacts with Arg18 (alphaA2) and Arg36 (betaB5), in a similar manner to the phosphotyrosine-protein interactions seen in structures of other SH2 domains complexed with pY peptides. It is the first example of a non-phosphate-containing, non-aromatic mimetic of phosphotyrosine binding to SH2 domains, and this could have implications for the design of substrate analogues and inhibitors. Overall, the crystal structure closely resembles the solution structure, but a number of loops which demonstrate mobility in solution are well defined by the crystal packing. C-SH2 has adopted a binding conformation reminiscent of the ligand bound N-terminal SH2 domain of PI3K, apparently induced by the substrate mimicking of a neighbouring molecule in the crystal.  相似文献   

5.
Weber T  Schaffhausen B  Liu Y  Günther UL 《Biochemistry》2000,39(51):15860-15869
The N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K) has a higher affinity for a peptide with two phosphotyrosines than for the same peptide with only one. This unexpected result was not observed for the C-terminal SH2 from the same protein. NMR structural analysis has been used to understand the behavior of the N-SH2. The structure of the free SH2 domain has been compared to that of the SH2 complexed with a doubly phosphorylated peptide derived from polyomavirus middle T antigen (MT). The structure of the free SH2 domain shows some differences from previous NMR and X-ray structures. In the N-SH2 complexed with a doubly phosphorylated peptide, a second site for phosphotyrosine interaction has been identified. Further, line shapes of NMR signals showed that the SH2 protein-ligand complex is subject to temperature-dependent conformational mobility. Conformational mobility is also supported by the spectra of the ligand peptide. A binding model which accounts for these results is developed.  相似文献   

6.
Signal transduction events are often mediated by small protein domains such as SH2 (Src homology 2) domains that recognize phosphotyrosines (pY) and flanking sequences. In case of the SHP-2 receptor tyrosine phosphatase an N-terminal SH2 domain binds and inactivates the phosphatase (PTP) domain. The pY-peptide-binding site on the N-terminal SH2 domain does not overlap with the PTP binding region. Nevertheless, pY-peptide binding causes domain dissociation and phosphatase activation. Comparative multi-nanosecond molecular dynamics simulations on the N-SH2 domain in ligand-bound and free states have been performed to study the allosteric mechanism that leads to domain dissociation upon pY-peptide binding. Significant ligand-dependent differences in the conformational flexibility of regions that are involved in SH2-PTP domain association have been observed. The results support a mechanism of signal transduction where SH2-peptide binding modulates the domain flexibility and reduces its capacity to fit into the entrance of the PTP catalytic domain of SHP-2.  相似文献   

7.
Intracellular signal transduction proteins typically utilize multiple interaction domains for proper targeting, and thus a broad diversity of distinct signaling complexes may be assembled. Considering the coordination of only two such domains, as in tandem Src homology 2 (SH2) domain constructs, gives rise to a kinetic scheme that is not adequately described by simple models used routinely to interpret in vitro binding measurements. To analyze the interactions between tandem SH2 domains and bisphosphorylated peptides, we formulated detailed kinetic models and applied them to the phosphoinositide 3-kinase p85 regulatory subunit/platelet-derived growth factor beta-receptor system. Data for this system from different in vitro assay platforms, including surface plasmon resonance, competition binding, and isothermal titration calorimetry, were reconciled to estimate the magnitude of the cooperativity characterizing the sequential binding of the high and low affinity SH2 domains (C-SH2 and N-SH2, respectively). Compared with values based on an effective volume approximation, the estimated cooperativity is 3 orders of magnitude lower, indicative of significant structural constraints. Homodimerization of full-length p85 was found to be an alternative mechanism for high avidity binding to phosphorylated platelet-derived growth factor receptors, which would render the N-SH2 domain dispensable for receptor binding.  相似文献   

8.
Two approaches have been utilized to investigate the role of individual SH2 domains in growth factor activation of phospholipase C-gamma1 (PLC-gamma1). Surface plasmon resonance analysis indicates that the individual N-SH2 and C-SH2 domains are able to specifically recognize a phosphotyrosine-containing peptide corresponding to Tyr 1021 of the platelet-derived growth factor (PDGF) beta receptor. To assess SH2 function in the context of the full-length PLC-gamma1 molecule as well as within the intact cell, PLC-gamma1 SH2 domain mutants, disabled by site-directed mutagenesis of the N-SH2 and/or C-SH2 domain(s), were expressed in Plcg1(-/-) fibroblasts. Under equilibrium incubation conditions (4 degrees C, 40 min), the N-SH2 domain, but not the C-SH2 domain, was sufficient to mediate significant PLC-gamma1 association with the activated PDGF receptor and PLC-gamma1 tyrosine phosphorylation. When both SH2 domains in PLC-gamma1 were disabled, the double mutant did not associate with activated PDGF receptors and was not tyrosine phosphorylated. However, no single SH2 mutant was able to mediate growth factor activation of Ca2+ mobilization or inositol 1,4,5-trisphosphate (IP3) formation. Subsequent kinetic experiments demonstrated that each single SH2 domain mutant was significantly impaired in its capacity to mediate rapid association with activated PDGF receptors and become tyrosine phosphorylated. Hence, when assayed under physiological conditions necessary to achieve a rapid biological response (Ca2+ mobilization and IP3 formation), both SH2 domains of PLC-gamma1 are essential to growth factor responsiveness.  相似文献   

9.

Background  

The N-terminal SH2 domain (N-SH2) of the non-receptor tyrosine phosphatase SHP-2 is involved both in localization of SHP-2 by recognition of phosphotyrosine (pY) peptides and self-inhibition of SHP-2 phosphatase activity through the formation of a protein – protein interface with the phosphatase domain. Mutations that disrupt this interface break the coupling between pY-peptide binding cleft conformation and self-inhibition, thereby increasing both SHP-2 phosphatase activity and pY-peptide binding affinity, and are associated with the congenital condition Noonan syndrome and various pediatric leukemias. To better characterize the molecular process involved in N-SH2 pY-dependent binding, we have applied explicit-solvent molecular dynamics simulations to study the closed-to-open transition of the N-SH2 pY-peptide binding cleft.  相似文献   

10.
Conflicting results concerning the ability of the epidermal growth factor (EGF) receptor to associate with and/or activate phosphatidylinositol (PtdIns) 3-kinase have been published. Despite the ability of EGF to stimulate the production of PtdIns 3-kinase products and to cause the appearance of PtdIns 3-kinase activity in antiphosphotyrosine immunoprecipitates in several cell lines, we did not detect EGF-stimulated PtdIns 3-kinase activity in anti-EGF receptor immunoprecipitates. This result is consistent with the lack of a phosphorylated Tyr-X-X-Met motif, the p85 Src homology 2 (SH2) domain recognition sequence, in this receptor sequence. The EGF receptor homolog, ErbB2 protein, also lacks this motif. However, the ErbB3 protein has seven repeats of the Tyr-X-X-Met motif in the carboxy-terminal unique domain. Here we show that in A431 cells, which express both the EGF receptor and ErbB3, PtdIns 3-kinase coprecipitates with the ErbB3 protein (p180erbB3) in response to EGF. p180erbB3 is also shown to be tyrosine phosphorylated in response to EGF. In contrast, a different mechanism for the activation of PtdIns 3-kinase in response to EGF occurs in certain cells (PC12 and A549 cells). Thus, we show for the first time that ErbB3 can mediate EGF responses in cells expressing both ErbB3 and the EGF receptor.  相似文献   

11.
Since the biological role of phospholipase C (PLC) gamma1 in neuronal differentiation still barely understood, here, we report that overexpression of PLC gamma1 inhibits neurite outgrowth and prolonged proliferation ability of PLC gamma1 contribute to the alteration of cell cycle regulatory proteins, subsequently exiting from cell growth arrest. Deletion of the SH3 or the entire SH223 domains, but not deletion of the N-SH2 or both the N-SH2 and C-SH2 domains expressing cells abolishes the differentiation-inhibitory effects of PLC gamma1, displaying depression of PCNA and elevation of cyclin D1. Moreover, these cells declined CDK1 and CDK2 expression and increased p21WAF-1, accompanying with G2/M accumulation. Some antiproliferative reagents are able to restore neurite outgrowth in PLC gamma1 cells, showing G2/M arrest. Our findings suggest that the proliferation activity of PLC gamma1 via its SH3 domain may be coupled with the flight from growth arrest by NGF, thereby inhibiting neuronal differentiation.  相似文献   

12.
Phospholipase-gamma1 (PLC-gamma1) prevents programmed cell death, for which the enzymatic activity has been implicated. However, the biological function of Src homology (SH) domains of PLC-gamma1 in promoting cell survival remains elusive. Here, we showed that deletion of the N-SH2 domain or both N-SH2 and C-SH2 domains, but not the SH3 domain, abolished the anti-apoptotic activity of PLC-gamma1. Surprisingly, removal of the whole SH domain inhibited apoptosis. The lipase-inactive PLC-gamma1 mutant (LIM) failed to suppress apoptosis. Moreover, the phospholipase activity in SH3- or whole SH domain-deleted cells was comparable to that of wild-type cells. By contrast, the enzymatic activity was substantially ablated in SH2 domain-deleted or LIM cells. A pharmacological inhibitor of PLC-gamma1 robustly diminished the anti-apoptotic action in wild-type, SH3- or whole SH domain-deleted cells, whereas pretreatment of SH2 domain-deleted or LIM cells with agents activating PKC and calcium mobilization markedly promoted cell survival. These results indicate that SH domains in PLC-gamma1 might mediate its anti-apoptotic action by regulating the enzymatic activity.  相似文献   

13.
Günther U  Mittag T  Schaffhausen B 《Biochemistry》2002,41(39):11658-11669
Few techniques for probing the role of individual amino acids in interactions of a protein with ligands are available. Chemical shift perturbations in NMR spectra provide qualitative information about the response of individual amino acids of a protein to its interactions with ligands. Line shapes derived from (15)N-HSQC spectra recorded for different steps of a ligand titration yield both kinetic constants and insight into mechanisms by which the ligand binds. Here we have analyzed line shapes for 37 signals of amino acids of the N-terminal src homology 2 domain (N-SH2) of the 85 kDa subunit of phosphatidylinositol 3-kinase (PI3-K) upon binding of phosphotyrosine (ptyr)-containing peptides. Kinetic rates at individual amino acids of the SH2 varied throughout the structure. For a subset of SH2 residues, the fine structure of the NMR line shapes indicated slow motions induced by the presence of small amounts of the ligand. These complex line shapes require one or more additional conformational states on the kinetic pathway. Modeling of the observed ligand interactions suggests a quasi-allosteric initial binding step. N-SH2 mutants with altered ligand affinity or specificity were also examined. Analysis of their line shapes revealed three distinct classes of mutants with different kinetic behaviors.  相似文献   

14.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

15.
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.  相似文献   

16.
The interactions between the phosphatidylinositol 3-kinase (PI 3-kinase) and Ras/MAPK kinase pathways have been the subject of considerable interest. In the current studies, we find that epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) lead to rapid phosphorylation of Shc (maximum at 1-2 min), whereas insulin-mediated Shc phosphorylation is relatively delayed (maximum at 5-10 min), suggesting that an intermediary step may be necessary for insulin stimulation of Shc phosphorylation. The Src homology-2 (SH2) domain of Shc is necessary for PDGF- and EGF-mediated Shc phosphorylation, whereas the phosphotyrosine binding (PTB) domain is critical for the actions of insulin. Because the Shc PTB domain can interact with phospholipids, we postulated that PI 3-kinase might be a necessary intermediary step facilitating insulin-stimulated phosphorylation of Shc. In support of this, we found that the PI 3-kinase inhibitors, wortmannin and LY294002, blocked insulin-stimulated but not EGF- or PDGF-stimulated Shc phosphorylation. Furthermore, overexpression of a dominant negative PI 3-kinase construct (p85N-SH2) blocked insulin, but not EGF- or PDGF-induced Shc phosphorylation. All three growth factors cause localization of Shc to the plasma membrane, but only the effect of insulin was inhibited by wortmannin, supporting the view that PI 3-kinase-generated phospholipids mediate insulin-stimulated Shc phosphorylation. Consistent with this, expression of a constitutively active PI 3-kinase (p110(C)(AAX)) increased membrane localization of Shc, and this was completely blocked by wortmannin. A mutant Shc with a disrupted PTB domain (Shc S154) did not localize to the membrane in p110(C)(AAX)-expressing cells or after insulin stimulation and was not phosphorylated by insulin. In summary, 1) PI 3-kinase is a necessary early step in insulin-stimulated Shc phosphorylation, whereas the effects of EGF and PDGF on Shc phosphorylation are independent of PI 3-kinase. 2) PI 3-kinase-stimulated generation of membrane phospholipids can localize Shc to the plasma membrane through the Shc PTB domain facilitating phosphorylation by the insulin receptor.  相似文献   

17.
Phosphatidylinositol 3-kinase is an important element in both normal and oncogenic signal transduction. Polyomavirus middle T antigen transforms cells in a manner depending on association of its tyrosine 315 phosphorylation site with Src homology 2 (SH2) domains on the p85 subunit of the phosphatidylinositol 3-kinase. Both nonselective and site-directed mutagenesis have been used to probe the interaction of middle T with the N-terminal SH2 domain of p85. Most of the 24 mutants obtained showed reduced middle T binding. However, mutations that showed increased binding were also found. Comparison of middle T binding to that of the platelet-derived growth factor receptor showed that some mutations altered the specificity of recognition by the SH2 domain. Mutations altering S-393, D-394, and P-395 were shown to affect the ability of the SH2 domain to select peptides from a degenerate phosphopeptide library. These results focus attention on the role of the EF loop in the SH2 domain in determining binding selectivity at the third position after the phosphotyrosine.  相似文献   

18.
CD4 serves as a receptor for major histocompatibility complex class II antigens and as a receptor for the human immunodeficiency virus type 1 (HIV-1) viral coat protein gp120. It is coupled to the protein-tyrosine kinase p56lck, an interaction necessary for an optimal response of certain T cells to antigen. In addition to the protein-tyrosine kinase domain, p56lck possesses Src homology 2 and 3 (SH2 and SH3) domains as well as a unique N-terminal region. The mechanism by which p56lck generates intracellular signals is unclear, although it has the potential to interact with various downstream molecules. One such downstream target is the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase), which has been found to bind to activated pp60src and receptor-tyrosine kinases. In this study, we verified that PI 3-kinase associates with the CD4:p56lck complex as judged by the presence of PI 3-phosphate generated from anti-CD4 immunoprecipitates and detected by high-pressure liquid chromatographic analysis. However, surprisingly, CD4-p56lck was also found to associate with another lipid kinase, phosphatidylinositol 4-kinase (PI 4-kinase). The level of associated PI 4-kinase was generally higher than PI 3-kinase activity. HIV-1 gp120 and antibody-mediated cross-linking induced a 5- to 10-fold increase in the level of CD4-associated PI 4- and PI 3-kinases. The use of glutathione S-transferase fusion proteins carrying Lck-SH2, Lck-SH3, and Lck-SH2/SH3 domains showed PI 3-kinase binding to the SH3 domain of p56lck, an interaction facilitated by the presence of an adjacent SH2 domain. PI 4-kinase bound to neither the SH2 nor the SH3 domain of p56lck. CD4-p56lck contributes PI 3- and PI 4-kinase to the activation process of T cells and may play a role in HIV-1-induced immune defects.  相似文献   

19.
SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism.  相似文献   

20.
One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号