首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Unicellular photosynthetic algae (dinoflagellate) from the genus Symbiodinium live in mutualistic symbiosis with reef-building corals. Cultured Symbiodinium sp. (clade C) were exposed to a range of environmental stresses that included elevated temperatures (29°C and 32°C) under high (100 μmol quanta m−2 s−1 Photosynthetic Active Radiation) and low (10 μmol quanta m−2 s−1) irradiances. Using real-time RT-PCR the stability of expression for the nine selected putative housekeeping genes (HKGs) was tested. The most stable expression pattern was identified for cyclophilin and S-adenosyl methionine synthetase (SAM) followed by S4 ribosomal protein (Rp-S4), Calmodulin (Cal), and Cytochrome oxidase subunit 1 (Cox), respectively. Thermal stress alone resulted in the highest expression stability for Rp-S4 and SAM, with a minimum of two reference genes required for data normalization. For Symbiodinium exposed to both, light and thermal stresses, at least five reference genes were recommended by geNorm analysis. In parallel, the expression of Hsp90 for Symbiodinium in culture and in symbiosis within coral host (Acropora millepora) was evaluated using the most stable HKGs. Our results revealed a drop in Hsp90 expression after an 18 h-period and a 24 h-period of exposure to elevated temperatures indicating the similar Hsp90 expression profile in symbiotic and non-symbiotic environments. This study provides the first list of the HKGs and will provide a useful reference in future gene expression studies in symbiotic dinoflagellates.  相似文献   

3.
We examined zooxanthellae diversity in scleractinian corals from southern Taiwan and the Penghu Archipelago, a tropical coral reef and a subtropical non-reefal community, respectively. Zooxanthellae diversity was investigated in 52 species of scleractinian corals from 26 genera and 13 families, using restriction fragment length polymorphism (RFLP), and phylogenetic analyses of the nuclear small-subunit ribosomal DNA (nssrDNA) and large-subunit ribosomal DNA (nlsrDNA). RFLP and phylogenetic analyses of nuclear-encoded ribosomal RNA genes showed that Symbiodinium clade C was the dominant zooxanthellae in scleractinian corals in the seas around Taiwan; Symbiodinium clade D was also found in some species. Both Symbiodinium clade C and D were found in colonies of seven species of scleractinian corals. Symbiodinium clade D was associated with corals that inhabit either shallow water or the reef edge in deep water, supporting the hypothesis that Symbiodinium clade D is a relatively stress-tolerant zooxanthellae found in marginal habitats.Communicated by Biological Editor H.R. Lasker  相似文献   

4.
Dinoflagellates in the genus Symbiodinium (zooxanthellae) provide the photosynthesis that sustains the majority of primary production in coral reefs. They occur symbiotically with several phyla, including mollusks such as giant clams (Tridacna spp.). This mutualistic association is obligatory for the giant clams, but the exact point in which this symbiosis is established and the main translocated photosynthate are unknown. In this study, we tracked the expression of specific genes for symbiosis and glycerol synthesis during a time course experiment. Giant clam larvae were raised until 75 h post-fertilization and then infected with cultured isolates of Symbiodinium clade A3. Expression of symbiosis-specific and housekeeping genes was monitored at four time points. The expression of H+-ATPase, a symbiosis-specific gene in Symbiodinium, was observed at 24 h after symbiont acquisition by the clam larvae. The expression of an enzyme responsible for glycerol synthesis was also observed. Together, these results show that the symbiotic relationship was already in place 24 h after Symbiodinium acquisition, during veliger larval stage. This is the first report using a molecular symbiosis-specific marker that supports symbiotic activity between Symbiodinium and a metazoan larva of an organism that acquires symbionts horizontally. From the expression of the glycerol-synthesizing gene, it was qualitatively determined that Symbiodinium cells may produce glycerol regardless of whether they are free-living or in symbiosis.  相似文献   

5.
We report the molecular cloning of a H+-ATPase in the symbiotic dinoflagellate, Symbiodinium sp. previously suggested by pharmacological studies to be involved in carbon-concentrating mechanism used by zooxanthellae when they are in symbiosis with corals. This gene encodes a protein of 975 amino acids with a calculated mass of about 105 kDa. The structure of the protein shows a typical P-type H+-ATPase structure (type IIIa plasma membrane H+-ATPases) and phylogenetic analyses show that this new proton pump groups with diatoms in the Chromoalveolates group. This Symbiodinium H+-ATPase is specifically expressed when zooxanthellae are engaged in a symbiotic relationship with the coral partner but not in free-living dinoflagellates. This proton pump, therefore, could be involved in the acidification of the perisymbiotic space leading to bicarbonate dehydration by carbonic anhydrase activity in order to supply inorganic carbon for photosynthesis as suggested by earlier studies. To our knowledge, this work provides the first example of a symbiosis-dependent gene in zooxanthellae and confirms the importance of H+-ATPase in coral–dinoflagellate symbiosis.  相似文献   

6.
Coral reef ecosystems are based on coral–zooxanthellae symbiosis. During the initiation of symbiosis, majority of corals acquire their own zooxanthellae (specifically from the dinoflagellate genus Symbiodinium) from surrounding environments. The mechanisms underlying the initial establishment of symbiosis have attracted much interest, and numerous field and laboratory experiments have been conducted to elucidate this establishment. However, it is still unclear whether the host corals selectively or randomly acquire their symbionts from surrounding environments. To address this issue, we initially compared genetic compositions of Symbiodinium within naturally settled about 2-week-old Acropora coral juveniles (recruits) and those in the adjacent seawater as the potential symbiont source. We then performed infection tests using several types of Symbiodinium culture strains and apo-symbiotic (does not have Symbiodinium cells yet) Acropora coral larvae. Our field observations indicated apparent preference toward specific Symbiodinium genotypes (A1 and D1-4) within the recruits, despite a rich abundance of other Symbiodinium in the environmental population pool. Laboratory experiments were in accordance with this field observation: Symbiodinium strains of type A1 and D1-4 showed higher infection rates for Acropora larvae than other genotype strains, even when supplied at lower cell densities. Subsequent attraction tests revealed that three Symbiodinium strains were attracted toward Acropora larvae, and within them, only A1 and D1-4 strains were acquired by the larvae. Another three strains did not intrinsically approach to the larvae. These findings suggest the initial establishment of corals–Symbiodinium symbiosis is not random, and the infection mechanism appeared to comprise two steps: initial attraction step and subsequent selective uptake by the coral.  相似文献   

7.
Peng SE  Chen WN  Chen HK  Lu CY  Mayfield AB  Fang LS  Chen CS 《Proteomics》2011,11(17):3540-3555
Gastrodermal lipid bodies (LBs) are organelles involved in the regulation of the mutualistic endosymbiosis between reef‐building corals and their dinoflagellate endosymbionts (genus Symbiodinium). As their molecular composition remains poorly defined, we herein describe the first gastrodermal LB proteome and examine in situ morphology of LBs in order to provide insight into their structure and function. After tissue separation of the tentacles of the stony coral Euphyllia glabrescens, buoyant LBs of the gastroderm encompassing a variety of sizes (0.5–4 μm in diameter) were isolated after two cycles of subcellular fractionation via stepwise sucrose gradient ultracentrifugation and detergent washing. The purity of the isolated LBs was demonstrated by their high degree of lipid enrichment and as well as the absence of contaminating proteins of the host cell and Symbiodinium. LB‐associated proteins were then purified, subjected to SDS‐PAGE, and identified by MS using an LC‐nano‐ESI‐MS/MS. A total of 42 proteins were identified within eight functional groups, including metabolism, intracellular trafficking, the stress response/molecular modification and development. Ultrastructural analyses of LBs in situ showed that they exhibit defined morphological characteristics, including a high‐electron density resulting from a distinct lipid composition from that of the lipid droplets of mammalian cells. Coral LBs were also characterized by the presence of numerous electron‐transparent inclusions of unknown origin and composition. Both proteomic and ultrastructural observations seem to suggest that both Symbiodinium and host organelles, such as the ER, are involved in LB biogenesis.  相似文献   

8.
9.
10.
Chen CS  Lin HP  Yeh CC  Fang LS 《Protoplasma》2005,226(3-4):175-179
Summary. Preparation of homogeneous endoderm cells and culture is a prerequisite to understanding the cellular and molecular mechanism of endosymbiosis in the cnidarian-dinoflagellate association. During the cell isolation from the stony coral Euphyllia glabrescens, various amounts of symbiotic endoderm cells were found to release their symbionts (Symbiodinium spp., or zooxanthellae in generic usage) into the culture. Due to the bulky occupation by zooxanthellae inside the endoderm cell, the symbiotic endoderm cells, or zooxanthellae in hospite, are difficult to be distinguished from released zooxanthellae by microscopic examination. We now report a method for this identification using a fluorescent analogue of sphingomyelin, N-[5-(5,7-dimethyl boron dipyrromethene difluoride)-1-pentanoyl]-D-erythro-sphingosylphosphorylcholine (C5-DMB-SM). Incubation of symbiotic endoderm cells with C5-DMB-SM–defatted bovine serum albumin (DF-BSA) complex results in bright fluorescent membrane staining. Nevertheless, the membrane staining of free-living or released zooxanthellae by this complex is significantly decreased or even diminished. This method has provided a fast and reliable assay to identify symbiotic endoderm cells and will greatly accelerate the progress of endosymbiosis research. Correspondence and reprints: National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan, R.O.C.  相似文献   

11.
The molecular mechanisms involved in the establishment and maintenance of sponge photosymbiosis, and in particular the association with cyanobacteria, are unknown. In the present study we analyzed gene expression in a common Mediterranean sponge (Petrosia ficiformis) in relation to its symbiotic (with cyanobacteria) or aposymbiotic status. A screening approach was applied to identify genes expressed differentially in symbiotic specimens growing in the light and aposymbiotic specimens growing in a dark cave at a short distance from the illuminated specimens. Out of the various differentially expressed sequences, we isolated two novel genes (here named PfSym1 and PfSym2) that were up-regulated when cyanobacterial symbionts were harbored inside the sponge cells. The sequence of one of these genes (PfSym2) was found to contain a conserved domain: the scavenger receptor cysteine rich (SRCR) domain. This is the first report on the expression of sponge genes in relation to symbiosis and, according to the presence of an SRCR domain, we suggest possible functions for one of the genes found in the sponge-cyanobacteria symbiosis.  相似文献   

12.
13.
14.
Many corals which engage in symbioses with dinoflagellates from the genus Symbiodinium (zooxanthellae) produce offspring which initially lack zooxanthellae. These species must choose their symbionts from numerous genetically distinct strains of zooxanthellae co-occurring in the environment. In most cases, symbiosis onset results in an association between a specific host coral and a specific strain of algal symbiont. This is the first study to examine host-symbiont specificity during symbiosis onset in a larval cnidarian, and the first to examine such events in a scleractinian of any life stage. We infected planula larvae of the solitary Hawaiian scleractinian Fungia scutaria with both homologous zooxanthellae, freshly isolated from F. scutaria adults, and heterologous zooxanthellae, isolated from Montipora verrucosa, Porites compressa, and Pocillopora damicornis, three species of scleractinians which co-occur with F. scutaria. We found that homologous zooxanthellae were better able to establish symbioses with larval hosts than were heterologous isolates, by two separate measures: percent of a larval population infected, and densities of zooxanthellae per larva. We also measured algal densities in larvae over a 4-day period until the onset of settlement and metamorphosis. We found no changes in zooxanthella population densities, regardless of zooxanthella type or the light environment in which they were incubated. Strong infection of host larvae with homologous algae compared to heterologous algae suggests that there is a specificity process which occurs sometime during the early stages of infection between the partners, and which results in the establishment of a specific symbiosis.  相似文献   

15.
16.
Genotypic characterization of Symbiodinium symbionts in hard corals has routinely involved coring, or the removal of branches or a piece of the coral colony. These methods can potentially underestimate the complexity of the Symbiodinium community structure and may produce lesions. This study demonstrates that microscale sampling of individual coral polyps provided sufficient DNA for identifying zooxanthellae clades by RFLP analyses, and subclades through the use of PCR amplification of the ITS-2 region of rDNA and denaturing-gradient gel electrophoresis. Using this technique it was possible to detect distinct ITS-2 types of Symbiodinium from two or three adjacent coral polyps. These methods can be used to intensely sample coral-symbiont population/communities while causing minimal damage. The effectiveness and fine scale capabilities of these methods were demonstrated by sampling and identifying phylotypes of Symbiodinium clades A, B, and C that co-reside within a single Montastraea faveolata colony.  相似文献   

17.
The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals'' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming.  相似文献   

18.
Symbiotic dinoflagellates in marine Cnidaria: diversity and function   总被引:1,自引:0,他引:1  
Dinoflagellates of the genus Symbiodinium are the most common symbiotic algae in benthic marine Cnidaria. This review addresses our current understanding of the molecular diversity of Symbiodinium and the function of these algae in symbiosis. Ribosomal DNA sequence data indicate that Symbiodinium is a diverse but probably monophyletic group. They also provide a phylogenetic framework for the analysis of the functional diversity of Symbiodinium (i.e. the variation in phenotype among various Symbiodinium genotypes), especially in relation to their nutritional role in the symbiosis. Symbiodinium provides the animal host with photosynthetic carbon and may also recycle animal nitrogenous waste. These interactions are advantageous to animals in shallow, oligotrophic waters. Recent developments in understanding of both photosynthate release and nitrogen relations in the symbiosis are reviewed. They provide the basis to explore the variation in nutritional interactions among different Symbiodinium genotypes. This review highlights areas of current uncertainty and controversy and addressess possible fulture directions of research.  相似文献   

19.
Summary Nodulins are organ-specific plant proteins induced during symbiotic nitrogen fixation. Nodulins play both metabolic and structural roles within infected and uninfected nodule cells. In soybean, several nodulin genes, coding for abundant nodulins, have been identified and isolated. Structural analysis of some of these genes has revealed their possible mode of regulation and the subcellar location of the protein product. Studies of ineffective symbiosis based on cultivar-strain genotype differences suggested that both partners influence the expression of nodulin genes. Concomitant with nodule organogenesis, the Rhizobium undergoes substantial differentiation leading to the accumulation of nodule-specific bacterial proteins, bacteroidins. The major structural alteration occuring in the infected cell is the formation of a membrane enclosing the bacteroid (peribacteroid membrane). A number of nodulins are specifically targetted to this membrane during endosymbiosis. The induction of nodulins and bacteroidins leads to the formation of an effective nodule. Nodulin genes can be induced in vitro by factors derived from nodules suggesting that trans-activators may be involved in derepression of the host genes necessary for Rhizobium-legume symbiosis.  相似文献   

20.
The symbiotic interaction between cnidarians (e.g., corals and sea anemones) and photosynthetic dinoflagellates of the genus Symbiodinium is triggered by both host–symbiont recognition processes and metabolic exchange between the 2 partners. The molecular communication is crucial for homeostatic regulation of the symbiosis, both under normal conditions and during stresses that further lead to symbiosis collapse. It is therefore important to identify and fully characterise the key players of this intimate interaction at the symbiotic interface. In this study, we determined the cellular and subcellular localization and expression of the sterol‐trafficking Niemann–Pick type C proteins (NPC1 and NPC2) in the symbiotic sea anemones Anemonia viridis and Aiptasia sp. We first established that NPC1 is localised within vesicles in host tissues and to the symbiosome membranes in several anthozoan species. We demonstrated that the canonical NPC2‐a protein is mainly expressed in the epidermis, whereas the NPC2‐d protein is closely associated with symbiosome membranes. Furthermore, we showed that the expression of the NPC2‐d protein is correlated with symbiont presence in healthy symbiotic specimens. As npc2‐d is a cnidarian‐specific duplicated gene, we hypothesised that it probably arose from a subfunctionalisation process that might result in a gain of function and symbiosis adaptation in anthozoans. Niemann–Pick type C proteins may be key players in a functional symbiosis and be useful tools to study host–symbiont interactions in the anthozoan–dinoflagellate association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号