首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Subcultures of Pseudomonas putida R5-3 altered their plasmid DNA content in specific ways depending on the particular aromatic hydrocarbon utilized as the sole carbon source. Two indigenous plasmids, 115 and 95 kilobases (kb) in size, were observed in R5-3A, which was derived from R5-3 by growth on minimal medium containing p-methylbenzoate as the sole carbon source. When R5-3A was transferred to medium containing m-xylene or toluene, derivative strains were obtained in which the 95-kb plasmid was lost and a new plasmid of 50 or 60 kb appeared. Reversion to the original plasmid profile of R5-3A was observed when xylene- or toluene-grown cells were returned to medium containing p-methylbenzoate. Restriction enzyme analysis and Southern blot hybridizations of total plasmid DNA indicated deletions and rearrangements of DNA restriction fragments in the derivatives maintained on m-xylene and toluene when compared with the original R5-3A. In the derivatives which retrieved the original plasmid profile, the restriction enzyme fragment pattern was identical to that in the original R5-3A, in that the fragments which were missing after growth on m-xylene or toluene were again present. Southern blot hybridizations revealed that part of the plasmid DNA lost from the original plasmid profile was integrated into the chromosomal DNA of xylene-grown R5-3B and that these plasmid fragments were associated with aromatic hydrocarbon metabolism. Hybridization with pathway-specific DNA fragments from the TOL plasmid pWWO indicated that this 95-kb plasmid contains DNA homologous to the meta-fission pathway genes.  相似文献   

2.
Analysis of the plasmid DNA derived from a colony of bacteria carrying pMS2-7 (preceding paper, Devos et al., 1979) revealed the presence of an additional, smaller plasmid DNA, identified as pMS2-701. It was shown that pMS2-701 also contained the nearly full-length MS2 DNA copy, but the extra DNA insertion that was present to the right of the MS2 DNA insert in pMS2-7 was absent. Transformation of Escherichia coli with a DNA preparation containing both plasmid DNAs allowed the recloning of the pMS2-701 plasmid. Upon further subculturing, however, the pMS2-7 type plasmid containing the extra DNA insertion reappeared. Furthermore, the proportion of pMS2-7 relative to pMS2-701 increased in the course of successive subcultures. The extra DNA insertion in pMS2-7 was identified as the translocatable element IS13 by mapping of restriction sites and by nucleotide sequence analysis. The boundaries between IS1 and pMS2-7 DNA revealed that IS1 had been inserted between the N-proximal part of the ampicillin gene and the poly(dA)-poly(dT) linker, and that a repetitious sequence of nine base-pairs in length had been generated by the translocation process.  相似文献   

3.
Prototrophic bacteria grow on M-9 minimal salts medium supplemented with glucose (M-9 medium), which is used as a carbon and energy source. Auxotrophs can be generated using a transposome. The commercially available, Tn5-derived transposome used in this protocol consists of a linear segment of DNA containing an R6Kγ replication origin, a gene for kanamycin resistance and two mosaic sequence ends, which serve as transposase binding sites. The transposome, provided as a DNA/transposase protein complex, is introduced by electroporation into the prototrophic strain, Enterobacter sp. YSU, and randomly incorporates itself into this host’s genome. Transformants are replica plated onto Luria-Bertani agar plates containing kanamycin, (LB-kan) and onto M-9 medium agar plates containing kanamycin (M-9-kan). The transformants that grow on LB-kan plates but not on M-9-kan plates are considered to be auxotrophs. Purified genomic DNA from an auxotroph is partially digested, ligated and transformed into a pir+ Escherichia coli (E. coli) strain. The R6Kγ replication origin allows the plasmid to replicate in pir+ E. coli strains, and the kanamycin resistance marker allows for plasmid selection. Each transformant possesses a new plasmid containing the transposon flanked by the interrupted chromosomal region. Sanger sequencing and the Basic Local Alignment Search Tool (BLAST) suggest a putative identity of the interrupted gene. There are three advantages to using this transposome mutagenesis strategy. First, it does not rely on the expression of a transposase gene by the host. Second, the transposome is introduced into the target host by electroporation, rather than by conjugation or by transduction and therefore is more efficient. Third, the R6Kγ replication origin makes it easy to identify the mutated gene which is partially recovered in a recombinant plasmid. This technique can be used to investigate the genes involved in other characteristics of Enterobacter sp. YSU or of a wider variety of bacterial strains.  相似文献   

4.
Intracellular location of plasmid NR1 (M = 58 Mg/mol, stringent control of replication, 1–2 copies perEscherichia coli chromosomal equivalent) was studied and compared with that of plasmid R6KΔ1 (M = 21 Mg/mol, relaxed control of replication, 10–15 copies perE. coli chromosomal equivalent), both inE. coli minicells. Considerable difference in relative distribution of molecules of these two plasmid DNA’s between the cytoplasm and the membrane fraction was found when components of the corresponding minicell lyzates were fractionated by sedimentation in a double-linear gradient of caesium chlorid and sucrose. Also the difference in relative numbers of NR1 DNA and R6KΔ1 DNA molecules stably associated with the membrane of minicells, determined by electron-microscopic examination of the fractions containing plasmid DNA-membrane complexes, was evaluated as statistically significant. The association of NR1 DNA molecules withE. coli minicell membrane was found to be a much more frequent event than such association of R6KΔ1 molecules. The absolute amount of plasmid DNA associated with membrane in a single minicell corresponds to one molecule for both NR1 and R6KAΔ1.  相似文献   

5.
Escherichia coli K-12 strains p108 (polA6), p3478 (polA1), and KS55 (polA12, ts) deficient in DNA polymerase I were transformed by recombinant pBR-mtB-A plasmid containing BamHI-A fragment of rat liver mtDNA and pBR322 plasmid. The physical map of the pBR-mtB-A, containing the recognition sites for SalI, EcoRI and HinIII endonucleases, was constructed and the orientation of mtDNA fragment joined to pBR322 plasmid was studied. The phenotypic selection using ampicillin containing medium at permissive and nonpermissive temperature (KS55 strain), or at 37 °C (polA6 and polA1 strains) revealed that only the cells transformed with the hybrid plasmid are able to grow under these conditions. The presence of mtDNA insertions in chimeric DNA molecules of pBR-mtB-A in polA strains was proved by electrophoretic and hybridization analysis. Thus the results obtained demonstrate the replication of the vehicle containing both plasmid replicon and mitochondrial origin in the conditions nonpermissive for the stable reproduction of the plasmid DNA alone.  相似文献   

6.
Gram-negative, rod-shaped bacteria from the soil of white clover-ryegrass pastures were screened for their ability to nodulate white clover (Trifolium repens) cultivar Grasslands Huia and for DNA homology with genomic DNA from Rhizobium leguminosarum biovar trifolii ICMP2668 (NZP582). Of these strains, 3.2% were able to hybridize with strain ICMP2668 and nodulate white clover and approximately 19% hybridized but were unable to nodulate. Strains which nodulated but did not hybridize with strain ICMP2668 were not detected. DNA from R. leguminosarum biovar trifolii (strain PN165) cured of its symbiotic (Sym) plasmid and a specific nod probe were used to show that the relationship observed was usually due to chromosomal homology. Plasmid pPN1, a cointegrate of the broad-host-range plasmid R68.45 and a symbiotic plasmid pRtr514a, was transferred by conjugation to representative strains of nonnodulating, gram-negative, rod-shaped soil bacteria. Transconjugants which formed nodules were obtained from 6 of 18 (33%) strains whose DNA hybridized with that of PN165 and 1 of 9 (11%) strains containing DNA which did not hybridize with that of PN165. The presence and location of R68.45 and nod genes was confirmed in transconjugants from three of the strains which formed nodules. Similarly, a pLAFR1 cosmid containing nod genes from a derivative of R. leguminosarum biovar trifolii NZP514 formed nodules when transferred to soil bacteria.  相似文献   

7.
Relaxases act as DNA selection sieves in conjugative plasmid transfer. Most plasmid relaxases belong to the HUH endonuclease family. TrwC, the relaxase of plasmid R388, is the prototype of the HUH relaxase family, which also includes TraI of plasmid F. In this article we demonstrate that TrwC processes its target nic-site by means of a highly secure double lock and key mechanism. It is controlled both by TrwC–DNA intermolecular interactions and by intramolecular DNA interactions between several nic nucleotides. The sequence specificity map of the interaction between TrwC and DNA was determined by systematic mutagenesis using degenerate oligonucleotide libraries. The specificity map reveals the minimal nic sequence requirements for R388-based conjugation. Some nic-site sequence variants were still able to form the U-turn shape at the nic-site necessary for TrwC processing, as observed by X-ray crystallography. Moreover, purified TrwC relaxase effectively cleaved ssDNA as well as dsDNA substrates containing these mutant sequences. Since TrwC is able to catalyze DNA integration in a nic-site-containing DNA molecule, characterization of nic-site functionally active sequence variants should improve the search quality of potential target sequences for relaxase-mediated integration in any target genome.  相似文献   

8.
The analysis of the virulence determinants of phytopathogenic Rhodococcus fascians has been hampered by the lack of a system for introducing exogenous DNA. We investigated the possibility of genetic transformation of R. fascians by high-voltage electroporation of intact bacterial cells in the presence of plasmid DNA. Electrotransformation in R. fascians D188 resulted in transformation frequencies ranging from 105/μg of DNA to 107/μg of DNA, depending on the DNA concentration. The effects of different electrical parameters and composition of electroporation medium on transformation efficiency are presented. By this transformation method, a cloning vector (pRF28) for R. fascians based on an indigenous 160-kilobase (chloramphenicol and cadmium resistance-encoding) plasmid pRF2 from strain NCPPB 1675 was developed. The origin of replication and the chloramphenicol resistance gene on pRF28 were used to construct cloning vectors that are capable of replication in R. fascians and Escherichia coli. The electroporation method presented was efficient enough to allow detection of the rare integration of replication-deficient pRF28 derivatives in the R. fascians D188 genome via either homologous or illegitimate recombination.  相似文献   

9.
In vitro clonal propagation of Capparis decidua was achieved using nodal explants from mature trees, and cotyledonary node, cotyledon and hypocotyl explants taken from the seedlings. Explants cultured on MS medium supplemented with BAP showed differentiation of multiple shoots and shoot buds in 4–5 weeks in the primary cultures. The medium with BAP (5 mg/l) was the best for shoot bud proliferation from the nodal as well as seedling explant. Shoot multiplication was best on cotyledonary node. In the nodal explants shoot multiplication was best on medium supplemented with 5 mg/l BAP and after second subculturing further multiplication of shoot buds was highest on the medium containing 3 mg/l BAP. Shoots were separated from mother cultures in each subculturing for rooting. Rooting was best achieved using 1 mg/l IBA in the medium. Rooted plantlets were transferred td earthen pots with garden soil and peat moss mixture.  相似文献   

10.
A simple approach was used to identify Rhizobium meliloti DNA regions with the ability to convert a nontransmissible vector into a mobilizable plasmid, i.e., to contain origins of conjugative transfer (oriT, mob). RecA-defective R. meliloti merodiploid populations, where each individual contained a hybrid cosmid from an R. meliloti GR4 gene library, were used as donors en masse in conjugation with another R. meliloti recipient strain, selecting transconjugants for vector-encoded antibiotic resistance. Restriction analysis of cosmids isolated from individual transconjugants resulted in the identification of 11 nonoverlapping DNA regions containing potential oriTs. Individual hybrid cosmids were confirmed to be mobilized from the original recA donors at frequencies ranging from 10−2 to 10−5 per recipient cell. DNA hybridization experiments showed that seven mob DNA regions correspond to plasmid replicons: four on symbiotic megaplasmid 1 (pSym1), one on pSym2, and another two on each of the two cryptic plasmids harbored by R. meliloti GR4. Another three mob clones could not be located to any plasmid and were therefore preliminarily assigned to the chromosome. With this strategy, we were able to characterize the oriT of the conjugative plasmid pRmeGR4a, which confirmed the reliability of the approach to select for oriTs. Moreover, transfer of the 11 mob cosmids from R. meliloti into Escherichia coli occurred at frequencies as high as 10−1, demonstrating the R. meliloti gene transfer capacity is not limited to the family Rhizobiaceae. Our results show that the R. meliloti genome contains multiple oriTs that allow efficient DNA mobilization to rhizobia as well as to phylogenetically distant gram-negative bacteria.  相似文献   

11.
The multiresistance plasmid pJHCMW1, first identified in a Klebsiella pneumoniae strain isolated from a neonate with meningitis, includes a Xer recombination site, mwr, with unique characteristics. Efficiency of resolution of mwr-containing plasmid dimers is strongly dependent on the osmotic pressure of the growth medium. An increase in supercoiling density of plasmid DNA was observed as the osmotic pressure of the growth culture decreased. Reporter plasmids containing directly repeated mwr, or the related cer sites were used to test if DNA topological changes were correlated with significant changes in efficiency of Xer recombination. Quantification of Holliday junctions showed that while recombination at cer was efficient at all levels of negative supercoiling, recombination at mwr became markedly less efficient as the level of supercoiling was reduced. These results support a model in which modifications at the level of supercoiling density caused by changes in the osmotic pressure of the culture medium affects resolution of mwr-containing plasmid dimers, a property that separates mwr from other Xer recombination target sites.  相似文献   

12.
Ovaries were removed from Ostrinia furnacalis (Guenée) pupae and were placed in a flask containing TNM-FH medium with 10% inactivated fetal bovine serum. Cell migration occurred after about 1 wk of the initiation in June 2011. The migrated cells were distributed over most of the flask and were treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), a chemical carcinogen, after about 1 mo of initiation for 26 d. Cells were first subcultured successfully 12 d after the MNNG was removed, followed by subculturing for 30 passages. The established cell line, designated IOZCAS-Osfu-1, were analyzed by DNA fingerprinting–PCR (DAF-PCR) to confirm that it originated from O. furnacalis.  相似文献   

13.
The stability of inheritance of plasmid R1drd-19 was tested. The copy number of the plasmid was determined in two different ways: As the ratio between covalently closed circular DNA and chromosomal DNA, and by quantitative determination of single-cell resistance to ampicillin. In the latter case, strains carrying the R1 ampicillin transposon Tn3 on prophage λ was used as standard. The values were transformed to copy number per cell by using the Cooper-Helmstetter model for chromosome replication as well as by determination of chromosomal DNA per cell by the diphenylamine method. The copy number was found to be five to six per cell (or about four per newborn cell). Nevertheless, plasmid R1drd-19 was found to be completely stably inherited. This stability was shown not to be due to retransfer of the plasmid by the R1 conjugation system, since transfer-negative derivatives of the plasmid were also completely stably inherited. Smaller derivatives of plasmid R1drd-19 were found to be lost at a frequency of about 1.5% per cell generation. The copy-number control was not affected in these miniplasmids, since their copy numbers were the same as that of the full size plasmid. Quantitatively, the instability of the miniplasmids was in accord with random partitioning. It is, therefore, suggested that the plasmid R1drd-19 carries genetic information for partitioning (par) of plasmid copies at cell division, and that the par mechanism is distinct from the copy number control (cop) system. Finally, the par gene maps on the resistance transfer part of the plasmid, but far away from the origin of replication and the so-called basic replicon; this is in accord with the approximate location of the repB gene (Yoshikawa, 1974, J. Bacteriol.,, 118, 1123–1131).  相似文献   

14.
Owens LD 《Plant physiology》1979,63(4):683-686
Protoplasts prepared from cultured tobacco cells were treated with ColE1-kan plasmid DNA, a hybrid of ColE1 and pSC105 plasmids bearing a gene for kanamycin resistance. The conditions employed permitted the uptake or irreversible binding of 2.9% of the added DNA in acid-insoluble form. Upon commencement of division, the treated cells were plated in agar medium containing kanamycin and differentiating hormones. Plantlets or shoots obtained as presumptive transformants were further tested on kanamycin medium by subculturing small leaf pieces. No evidence was obtained for expression of the kanamycin resistance gene of ColE1-kan in tobacco tissue.  相似文献   

15.
We have constructed two miniplasmids, derived from the resistance plasmid R100.1. In one of these plasmids 400 bp of R100.1 DNA have been replaced by DNA from the transposon Tn1000 (gamma-delta). This substitution removes the amino-terminal end of the repA2 coding sequence of R100.1 and results in an increased copy number of the plasmid carrying the substitution. The copy number of the substituted plasmid is reduced to normal levels in the presence of R100.1. The repA2 gene thus encodes a trans-acting repressor function involved in the control of plasmid replication.  相似文献   

16.
The R1 origin region contains many symmetrical DNA sequence elements which allow the formation of complex secondary structures. A 218-bp in vivo deletion in a cloned R1 origin fragment removes most of them. As this deletion was never observed in plasmids containing all R1 replication functions, it was introduced by BglI in vitro recombination into the `basic replicon' of R1 cloned into pBR322. The recombinant plasmid with the 218-bp deletion and its derivatives unambiguously show that the deleted symmetrical elements are not absolutely essential for R1 replication as was previously assumed though they seem to determine a more efficient origin function. Likewise, a hypothetical protein of a mol. wt. of 14 000 daltons, the major part of which would be encoded by the deleted sequences, does not seem to be of particular importance for R1-specific replication. This is the first report of an alteration in the origin region of an IncFII plasmid which affects plasmid replication without abolishing it completely.  相似文献   

17.
In Escherichia coli three major alkaline phosphatase isozymes are formed by molecular conversions depending on physiological conditions. A chromosomal gene, iap, is responsible for alkaline phosphatase isozyme conversion and is assumed to code for a proteolytic enzyme removing the arginine residue(s) from the N-terminal position of alkaline phosphatase subunits. A chromosomal fragment which complemented the Iap? phenotype was cloned into pBR322 by a shotgun method. Transducing phage λiap was constructed in vitro from the chromosomal fragment containing the iap gene and λtna DNA. The integration site of the phage on chromosome was identified as the iap locus by PI transduction, which meant that the cloned chromosomal DNA contained authentic iap gene.The restriction map of the hybrid plasmid was constructed. Based upon this information, several iap deletion plasmids as well as smaller iup+ plasmids were constructed. Analysis of the phenotypes conferred by these plasmids enabled us to locate iap gene within a 2-kb segment of the cloned DNA.The cells carrying the iap+ plasmid showed very efficient isozyme conversion even in medium containing arginine, an inhibitor for the isozyme conversion. This indicates overproduction of the iap gene product.  相似文献   

18.
Transgenic haploid maize (Zea mays L.) plants were obtained from protoplasts isolated from microspore-derived cell suspension cultures. Protoplasts were electroporated in the presence of plasmid DNA containing the gus A and npt II genes encoding ß-glucuronidase (GUS) and neomycin phosphotransferase II (NPT II), respectively. Transformed calli were selected and continuously maintained on kanamycin containing medium. Stable transformation was confirmed by enzyme assays and DNA. analysis. Stably transformed tissue was transferred to regeneration medium and several plants were obtained. Most plants showed NPT II activity, and some also showed GUS activity. Chromosome examinations performed on representative plants showed that they were haploid. As expected, these plants were infertile.  相似文献   

19.
The isolation of conditional mutants with an altered copy number of the R plasmid R1drd-19 is described. Temperature-dependent as well as amber-suppressible mutants were found. These mutant plasmids have been named pKN301 and pKN303, respectively. Both types of mutations reside on the R plasmid. No difference in molecular weight could be detected by neutral sucrose gradient centrifugation for any of the mutant plasmids when compared with the wild-type plasmid. The number of copies of the plasmids was determined by measurement of the specific activity of the R plasmid-mediated β-lactamase and by measurement of covalently closed circular (CCC) DNA in alkaline sucrose gradients and dye-CsCl density gradients. Below 34 °C the temperature-dependent mutant, pKN301, had the same copy number as the wild type, while this was four times that of the wild type above 37 °C. The amber mutant pKN303 had a copy number indistinguishable from that of the wild-type plasmid in a strain containing a strong amber suppressor and a copy number about five times that of the wild-type plasmid in a strain lacking an amber suppressor. In a strain containing a temperature-sensitive amber suppressor, the amber mutant's copy number increased with the decrease in amber suppressor activity. Thus, the existence of the temperature-dependent and the amber-suppressible R-plasmid copy mutants indicates that the system that controls the replication of plasmid R1drd-19 contains an element with a negative function and that this element is a protein.  相似文献   

20.
The strain BYT-1, capable of utilizing ODAP/DAP as a sole source of nitrogen and carbon was identified as Psuedomonas stutzeri by various microbial and biochemical tests. Transformation experiments showed that the ODAP utilizing property Is encoded by the plasmid. Restriction of plasmid DNA with Pstl, followed by cloning of fragments and screening of ODAP containing medium, led to the isolation of a clone with insert size of ?3.3 kb, which encoded ODAP metabolizing property. The growth and ODAP/DAP utilization by this clone (TB) was almost similar to that of the wild type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号