首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Simple sequence repeats (SSRs) are known to exhibit high degrees of variability even among closely related individuals. Their usage as nuclear genetic markers requires their conversion into sequence-tagged sites (STSs). In this paper we present the development of simple sequences as STSs for Beta vulgaris. This species comprises wild, cultivated, and weedy forms; the latter are thought to originate from accidental hybridisation between the other two. Two partial genomic libraries were screened with simple sequence motifs (AT, CA, CT, ATT, GTG, and CA, CT, respectively). Clones of 22 CA, nine CT, eight ATT, and one GTG sequence were obtained. AT micro satellites were present in compound motifs, not recognised by the probe. Sequence comparisons revealed that 20 CA clones containing short motifs (<16 bp) were variants of a previously described approximately 320-bp satellite DNA (Schmidt et al. 1991), and hence did not correspond to unique loci. Polymorphism of one (ATT)15 and three (CT)n, with n=15, 17 and 26, was detected by PCR on a sample of 64 plants from the different forms of B. vulgaris. 13 (ATT), 13 (CT), nine (CT) alleles and one (CT) allele were detected. One of the ATT alleles was much larger than the others (>800 bp). Genetic variability was high among wild beets, lower among cultivated beets, and intermediate among weed beets. One allele of each locus was found at high frequencies in cultivated beets and, to a lower extent, in weed beets. The combination of three polymorphic loci allowed the individual identification of 17/17 wild and 15/15 weed beets, and 21/32, mostly homozygous, cultivated beets.  相似文献   

2.
Argopecten nucleus is a functional hermaphroditic pectinid species that exhibits self‐fertilization, whose natural populations have usually very low densities. In the present study, the genetic diversity of a wild population from Neguanje Bay, Santa Marta (Colombia), was estimated using microsatellite markers, and the effect of the presence of null alleles on this estimation was assessed. A total of 8 microsatellite markers were developed, the first described for this species, and their amplification conditions were standardized. They were used to determine the genotype of 48 wild individuals from Naguanje Bay, and 1,010 individuals derived from the offspring of 38 directed crosses. For each locus, the frequencies of the identified alleles, including null alleles, were estimated using the statistical package Micro‐Checker, and the parental genotypes were confirmed using segregation analysis. Three to 8 alleles per locus with frequencies from 0.001 to 0.632 were detected. The frequencies of null alleles ranged from 0.10 to 0.45, with Ho from 0.0 to 0.79, and He from 0.53 to 0.80. All loci were in H‐W disequilibrium. The null allele frequencies values were high, with lower estimations using segregation analysis than estimated using Micro‐Checker. The present results show high levels of population genetic diversity and indicate that null alleles were not the only cause of deviation from H‐W equilibrium in all loci, suggesting that the wild population under study presents signs of inbreeding and Wahlund effect.  相似文献   

3.
Molecular markers can be used to estimate gene flow indirectly by monitoring the relative frequency of alleles in adjacent populations. Sea beet (Beta vulgaris ssp. maritima) is a wild plant species found along the coastlines of many European countries and is closely related to cultivated beets. A set of six simple sequence repeat (SSR) markers that are polymorphic in UK populations have been developed for sea beet to assess the problems of indirect measurement of gene flow in these populations.  相似文献   

4.
The genus Beta L. is a morphologically and genetically variable group composed of wild, weedy, and domesticated forms that are used for sugar production or as vegetables. In this study, we have evaluated genetic variation in 64 germplasm accessions of wild and domesticated beets and examined the origin of wild beet accessions in California using allozyme analysis. UPGMA analysis showed overall that domesticated and wild beets form genetically coherent groups. Wild beets in California have two different origins, from European Beta vulgaris or from Beta macrocarpa. Population-level patterns of allozyme variation for wild California beets related to B. vulgaris suggest that those populations evolved from naturalized populations of the cultivated B. vulgaris ssp. vulgaris which had hybridized to varying degrees with the sea beets B. vulgaris ssp. maritima. Wild California beets related to B. macrocarpa are essentially genetically identical to European accessions. In addition, we found substantial evidence for hybridization and introgression of B. vulgaris alleles in one B. macrocarpa accession in California. The obligate outcrosser B. vulgaris exhibits more allelic diversity than the self-compatible B. macrocarpa. Beta vulgaris ssp. maritima exhibits more genetic diversity than domesticated B. vulgaris ssp. vulgaris. Received: 2 November 1998 / Accepted: 29 April 1999  相似文献   

5.
 Beets belonging to the species Beta vulgaris L. can be found in crop, wild and weedy forms, all of which are interfertile. We studied the intra-specific genetic relationships of about 300 individuals from 54 populations of various French geographic origins using nuclear molecular markers (five single-copy RFLP loci and one microsatellite locus). The patterns of diversity were congruent for both types of markers. Genetic diversity in wild beets appeared to be high, both in term of allele number and observed heterozygosity, whereas the narrowness of the cultivated-beet gene pool was confirmed. Genetic distances between all forms showed that weed beets in northern France are intermediates between sugar beet and inland wild beets in south-western France. This analysis allowed us to infer the paternal origin of weed beets and furthermore, is in agreement with a previous study which focused on their maternal origin: weed beet infesting sugar-beet fields originated from accidental and recurrent hybridization between cultivated lines and ruderal inland wild beets during the production of commercial seeds in south-western France. Inland wild beets are genetically close to Mediterranean coastal wild beets, but differ from other coastal forms (from Biscay, Brittany and northern France). The study of gene flow in the beet complex contributes to the risk assessment of transgenic beets. Received: 8 June 1998 / Accepted: 8 October 1998  相似文献   

6.
Hybridization between cultivated species and their wild relatives is now widely considered to be common. In the Beta vulgaris complex, the sugar beet seed multiplication areas have been the scene of inadvertent pollination of sugar beet seed bearers by wild ruderal pollen donors, generating a weedy form of beet which infests sugar beet fields in European countries. Up to now, investigations of evolutionary dynamics of genetic diversity within the B. vulgaris complex were addressed using few genetical markers and few accessions. In this study, we tackled this issue using a panel of complementary markers: five nuclear microsatellite loci, four mitochondrial minisatellite loci and one chloroplastic PCR-RFLP marker. We sampled 1,640 individuals that illustrate the actual distribution of inland ruderal beets of South Western France, weed beets and wild sea beets of northern France as well as the diversity of 35 contemporary European diploid cultivars. Nuclear genetic diversity in weed beets appeared to be as high as those of ruderal beets and sea beets, whereas the narrowness of cultivar accessions was confirmed. This genetic bottleneck in cultivars is even more important in the cytoplasmic genome as only one haplotype was found among all sugar beet cultivars. The large majority of weed beet populations also presented this unique cytoplasmic haplotype, as expected owing to their maternal cultivated origin. Nonetheless, various cytoplasmic haplotypes were found within three populations of weed beets, implying wild-to-weed seed flows. Finally, our findings gave new insights into the genetical relationships between the components of the B. vulgaris complex: (1) we found a very strong genetic divergence between wild sea beet and other relatives, which was unexpected given the recent evolutionary history and the full cross-compatibility of all taxa and (2) we definitely confirmed that the classification into cultivated, wild, ruderal and weed forms according to their geographical location, phenotype or their domesticated status is clearly in accordance with genetic clustering despite the very recent domestication process of sugar beet. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Gene flow and introgression from cultivated plants may have important consequences for the conservation of wild plant populations. Cultivated beets (sugar beet, red beet and Swiss chard: Beta vulgaris ssp. vulgaris) are of particular concern because they are cross-compatible with the wild taxon, sea beet (B.vs. ssp. maritima). Cultivated beet seed production areas are sometimes adjacent to sea beet populations; the numbers of flowering individuals in the former typically outnumber those in the populations of the latter. In such situations, gene flow from cultivated beets has the potential to alter the genetic composition of the nearby wild populations. In this study we measured isozyme allele frequencies of 11 polymorphic loci in 26 accessions of cultivated beet, in 20 sea beet accessions growing near a cultivated beet seed production region in northeastern Italy, and 19 wild beet accessions growing far from seed production areas. We found one allele that is specific to sugar beet, relative to other cultivated types, and a second that has a much higher frequency in Swiss chard and red beet than in sugar beet. Both alleles are typically rare in sea beet populations that are distant from seed production areas, but both are common in those that are near the Italian cultivated beet seed production region, supporting the contention that gene flow from the crop to the wild species can be substantial when both grow in proximity. Interestingly, the introgressed populations have higher genetic diversity than those that are isolated from the crop. The crop-to-wild gene flow rates are unknown, as are the fitness consequences of such alleles in the wild. Thus, we are unable to assess the long-term impact of such introgression. However, it is clear that gene flow from a crop to a wild taxon does not necessarily result in a decrease in the genetic diversity of the native plant.  相似文献   

8.
Understanding whether populations can adapt in situ or whether interventions are required is of key importance for biodiversity management under climate change. Landscape genomics is becoming an increasingly important and powerful tool for rapid assessments of climate adaptation, especially in long‐lived species such as trees. We investigated climate adaptation in Eucalyptus microcarpa using the DArTseq genomic approach. A combination of FST outlier and environmental association analyses were performed using >4200 genomewide single nucleotide polymorphisms (SNPs) from 26 populations spanning climate gradients in southeastern Australia. Eighty‐one SNPs were identified as putatively adaptive, based on significance in FST outlier tests and significant associations with one or more climate variables related to temperature (70/81), aridity (37/81) or precipitation (35/81). Adaptive SNPs were located on all 11 chromosomes, with no particular region associated with individual climate variables. Climate adaptation appeared to be characterized by subtle shifts in allele frequencies, with no consistent fixed differences identified. Based on these associations, we predict adaptation under projected changes in climate will include a suite of shifts in allele frequencies. Whether this can occur sufficiently rapidly through natural selection within populations, or would benefit from assisted gene migration, requires further evaluation. In some populations, the absence or predicted increases to near fixation of particular adaptive alleles hint at potential limits to adaptive capacity. Together, these results reinforce the importance of standing genetic variation at the geographic level for maintaining species’ evolutionary potential.  相似文献   

9.
Gene flow is a crucial parameter that can affect the organization of genetic diversity in plant species. It has important implications in terms of conservation of genetic resources and of gene exchanges between crop to wild relatives and within crop species complex. In the Beta vulgaris complex, hybridization between crop and wild beets in seed production areas is well documented and the role of the ensuing hybrids, weed beets, as bridges towards wild forms in sugar beet production areas have been shown. Indeed, in contrast to cultivated beets that are bi-annual, weed beets can bolt, flower and reproduce in the same crop season. Nonetheless, the extent of pollen gene dispersal through weedy lineages remains unknown. In this study, the focus is directed towards weed-to-weed gene flow, and we report the results of a pollen-dispersal analysis within an agricultural landscape composed of five sugar beet fields with different levels of infestation by weed beets. Our results, based on paternity analysis of 3240 progenies from 135 maternal plants using 10 microsatellite loci, clearly demonstrate that even if weedy plants are mostly pollinated by individuals from the same field, some mating events occur between weed beets situated several kilometres apart (up to 9.6 km), with rates of interfield-detected paternities ranging from 11.3% to 17.5%. Moreover, we show that pollen flow appears to be more restricted when individuals are aggregated as most mating events occurred only for short-distance classes. The best-fit dispersal curves were fat-tailed geometric functions for populations exhibiting low densities of weed beets and thin-tailed Weibull function for fields with weed beet high densities. Thus, weed beet populations characterized by low density with geographically isolated individuals may be difficult to detect but are likely to act as pollen traps for pollen emitted by close and remote fields. Hence, it appears evident that interfield pollen-mediated gene flow between weed beets is almost unavoidable and could contribute to the diffusion of (trans)genes in the agricultural landscape.  相似文献   

10.
Native plants are increasingly used for revegetation and restoration. These plants are cultivated for several generations at plant nurseries and often they are of unknown provenance. Therefore, cultivated plants often differ from their wild progenitors in life‐history traits. Using germination behavior as example, we tested the assumption that cultivated plants have different life‐history traits than their uncultivated progenitors. Cultivated as well as wild individuals of Plantago lanceolata and Lotus corniculatus, two species frequently used in revegetation, were tested in a common garden experiment as well as in incubators for their germination behavior. We observed significantly faster and more abundant germination in cultivated varieties. Using artificial crossings, we found that also hybrids of cultivated varieties and wild relatives germinate faster and more abundant than the wilds. As wild plants acquire their life‐history traits by natural selection, we have to assume that they represent the optimal adaptation to the environmental conditions. If these traits are changed by cultivation or by hybridization between cultivated varieties and local populations, the long‐term survival probabilities of local populations may be altered. Therefore, the use of cultivated varieties of native plants should be avoided in revegetation.  相似文献   

11.
With the increasing availability of both molecular and topo‐climatic data, the main challenges facing landscape genomics – that is the combination of landscape ecology with population genomics – include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present sam βada , an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large‐scale genetic and environmental data sets. sam βada identifies candidate loci using genotype–environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype–environment associations. In addition, sam βada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with sam βada , bayenv , lfmm and an FST outlier method (FDIST approach in arlequin ) and compare their results. sam βada – an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada – outperforms other approaches and better suits whole‐genome sequence data processing.  相似文献   

12.
Functional polymorphisms in genes encoding enzymes involved in folate metabolism might modulate head and neck carcinoma risk because folate participates in DNA methylation and synthesis. We therefore conducted a case–control study of 853 individuals (322 head and neck cancer cases and 531 non-cancer controls) to investigate associations among MTHFR C677T and MTHFR A1298C polymorphisms and head and neck squamous cell carcinoma risk. Interactions between these two polymorphisms and risk factors and clinical histopathological parameters were also evaluated. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used to genotype the polymorphisms and Chi-square test and multiple logistic regression were used for statistical analyses. The variables age ≥49 years, male gender, tobacco habits and alcohol consumption, MTHFR 1298 AC or CC genotypes, combined genotypes with two or more polymorphic alleles and 677T and 1298C polymorphic alleles were associated with increased risk for this disease (P < 0.05). Furthermore, we found that 1298 AC or CC genotypes were associated with age ≥49 years, tobacco and alcohol habits (P < 0.05). Regarding clinical histopathological parameters, the A1298C polymorphism was more frequent in patients with oral cavity as primary site (P < 0.05). MTHFR polymorphisms may contribute for increase risk for head and neck carcinoma and the variables age ≥49 years, male gender, tobacco and alcohol habits were associated with MTHFR 1298AC or CC genotypes, confirming that individuals with these variables and MTHFR A1298C polymorphism has higher risk for this disease.  相似文献   

13.
Local adaptation is often studied via (i) multiple common garden experiments comparing performance of genotypes in different environments and (ii) sequencing genotypes from multiple locations and characterizing geographic patterns in allele frequency. Both approaches aim to characterize the same pattern (local adaptation), yet the complementary information from each has not yet been coherently integrated. Here, we develop a genome‐wide association model of genotype interactions with continuous environmental gradients (G × E), that is reaction norms. We present an approach to impute relative fitness, allowing us to coherently synthesize evidence from common garden and genome–environment associations. Our approach identifies loci exhibiting environmental clines where alleles are associated with higher fitness in home environments. Simulations show our approach can increase power to detect loci causing local adaptation. In a case study on Arabidopsis thaliana, most identified SNPs exhibited home allele advantage and fitness trade‐offs along climate gradients, suggesting selective gradients can maintain allelic clines. SNPs exhibiting G × E associations with fitness were enriched in genic regions, putative partial selective sweeps and associations with an adaptive phenotype (flowering time plasticity). We discuss extensions for situations where only adaptive phenotypes other than fitness are available. Many types of data may point towards the loci underlying G × E and local adaptation; coherent models of diverse data provide a principled basis for synthesis.  相似文献   

14.
Testing how populations are locally adapted and predicting their response to their future environment is of key importance in view of climate change. Landscape genomics is a powerful approach to investigate genes and environmental factors involved in local adaptation. In a pooled amplicon sequencing approach of 94 genes in 71 populations, we tested whether >3500 single nucleotide polymorphisms (SNPs) in the three most common oak species in Switzerland (Quercus petraea, Q. pubescens, Q. robur) show an association with abiotic factors related to local topography, historical climate and soil characteristics. In the analysis including all species, the most frequently associated environmental factors were those best describing the habitats of the species. In the species‐specific analyses, the most important environmental factors and associated SNPs greatly differed among species. However, we identified one SNP and seven genes that were associated with the same environmental factor across all species. We finally used regressions of allele frequencies of the most strongly associated SNPs along environmental gradients to predict the risk of nonadaptedness (RONA), which represents the average change in allele frequency at climate‐associated loci theoretically required to match future climatic conditions. RONA is considerable for some populations and species (up to 48% in single populations) and strongly differs among species. Given the long generation time of oaks, some of the required allele frequency changes might not be realistic to achieve based on standing genetic variation. Hence, future adaptedness requires gene flow or planting of individuals carrying beneficial alleles from habitats currently matching future climatic conditions.  相似文献   

15.
This study reports the development and characterization of 20 microsatellite primer pairs in wild strawberry Fragaria vesca. One hundred primers were obtained from an AC‐enriched library developed in the cultivar ‘Ilaria’. A set of eight F. vesca genotypes was used to detect the polymorphism resulting in an average of 7.0 alleles, an average observed heterozygosity of 0.32 and an average expected heterozygosity of 0.73. Nineteen (95%) of the primers also amplified the cultivated octoploid strawberry Fragaria×ananassa.  相似文献   

16.
Semi‐natural mountain grasslands are increasingly exposed to environmental stress under climate change. However, which are the environmental factors that limit plants in these grasslands? Also, is the present management effective against these changes? Fitness‐related functional traits may offer a way to detect changes in performance and provide new insights into their vulnerability to climate change. We investigated changes in performance and variability of functional traits of the mountain grassland target species Arnica montana along a climate gradient in Central German low mountain ranges. This gradient represents at its lower end climate conditions that are expected at its upper end under future climate change. We measured vegetative, generative, and physiological traits to account for multiple ways of plant responses to the environment. Using mixed effects and multivariate models, we evaluated changes in trait values among individuals as well as the variability of their populations in order to assess performance under changing summer aridity and different management regimes. Fitness‐related performance of most traits showed strongly positive associations with reduced summer aridity at higher elevations, while only specific leaf area and leaf dry matter content showed no association. This suggests a higher performance level at less arid montane sites and that the physiological traits are less sensitive to this climate change factor. The coefficient of variation of almost all traits declined steadily with decreasing site aridity. We suggest that this reduced variability indicates a lower environmental stress level for A. montana toward its environmental optimum at montane elevations, especially because the trait performance increased simultaneously. Surprisingly, management factors and habitat characteristics had only low influence on both trait performance and variability. In summary, summer aridity had a stronger effect to shape the trait performance and variability of A. montana under increased environmental stress than management and other habitat characteristics.  相似文献   

17.
Aim To examine the influence of environmental variables on species richness patterns of amphibians, reptiles, mammals and birds and to assess the general usefulness of regional atlases of fauna. Location Navarra (10,421 km2) is located in the north of the Iberian Peninsula, in a territory shared by Mediterranean and Eurosiberian biogeographic regions. Important ecological patterns, climate, topography and land‐cover vary significantly from north to south. Methods Maps of vertebrate distribution and climatological and environmental data bases were used in a geographic information systems framework. Generalized additive models and partial regression analysis were used as statistical tools to differentiate (A) the purely spatial fraction, (B) the spatially structured environmental fraction and (C) the purely environmental fraction. In this way, we can evaluate the explanatory capacity of each variable, avoiding false correlations and assessing true causality. Final models were obtained through a stepwise procedure. Results Energy‐related features of climate, aridity and land‐cover variables show significant correlation with the species richness of reptiles, mammals and birds. Mammals and birds exhibit a spatial pattern correlated with variables such as aridity index and vegetation land‐cover. However, the high values of the spatially structured environmental fraction B and the low values of the purely environmental fraction A suggest that these predictor variables have a limited causal relationship with species richness for these vertebrate groups. An increment in land‐cover diversity is correlated with an increment of specific richness in reptiles, mammals and birds. No variables were found to be statistically correlated with amphibian species richness. Main conclusions Although aridity and land‐cover are the best predictor variables, their causal relationship with species richness must be considered with caution. Historical factors exhibiting a similar spatial pattern may be considered equally important in explaining the patterns of species richness. Also, land‐cover diversity appears as an important factor for maintaining biological diversity. Partial regression analysis has proved a useful technique in dealing with spatial autocorrelation. These results highlight the usefulness of coarsely sampled data and cartography at regional scales to predict and explain species richness patterns for mammals and birds. The accuracy of models appears to be related to the range perception of each group and the scale of the information.  相似文献   

18.
Chloroplast DNA (cpDNA) markers and 12 nuclear (random amplified polymorphic DNA, or RAPD) markers were used to examine the distribution of genetic variation among individuals and the genetic and ecological associations in a hybrid iris population. Plants in the population occurred at various distances from the edge of a bayou in a relatively undisturbed mixed hardwood forest and in an adjacent pasture dominated by herbaceous perennials with interspersed oak and cypress trees. The majority of plants sampled possessed combinations of markers from the different Iris species. Genetic markers diagnostic for Iris fulva and I. brevicaulis occurred at high frequencies, whereas markers diagnostic for I. hexagona were infrequent. For the majority of the nuclear markers, significant levels of cytonuclear disequilibria existed because of intraspecific associations among the markers in both the pasture and the forest. The distribution of nuclear markers among individuals was bimodal; intermediate genotypes were absent and the majority of RAPD markers were associated with their intraspecific cpDNA haplotypes. Strong intraspecific associations existed among RAPD markers in the forest, but associations tended to be weaker in the pasture area. Ecological correlations were detected for all but one of the I. fulva and I. brevicaulis RAPD markers. The ecological associations of hybrids similar to I. brevicaulis resembled associations of I. brevicaulis parental genotypes, suggesting that these hybrid genotypes may be relatively fit in the same habitats. The hybrids similar to I. fulva, however, were distributed in habitats that were unique relative to the parental species. The patterns of genetic and environmental associations along with other available data suggest that (1) only advanced generation hybrids were present in the population; (2) formation of F1 hybrids among Louisiana irises is rare, leading to sporadic formation of hybrid populations; and (3) selection and assortative mating have contributed to the formation of hybrid genotypes that tend to be similar to parental genotypes. The patterns of ecological and genetic associations detected in this population suggest that assortative mating and environmental and viability selection are important in the structuring and maintenance of this hybrid zone.  相似文献   

19.
Wild species can be used to improve various agronomic traits in cultivars; however, a limited understanding of the genetic basis underlying the morphological differences between wild and cultivated species hinders the integration of beneficial traits from wild species. In the present study, we generated and sequenced recombinant inbred lines (RILs, 201 F10 lines) derived from a cross between Solanum pimpinellifolium and Solanum lycopersicum tomatoes. Based on a high‐resolution recombination bin map to uncover major loci determining the phenotypic variance between wild and cultivated tomatoes, 104 significantly associated loci were identified for 18 agronomic traits. On average, these loci explained ~39% of the phenotypic variance of the RILs. We further generated near‐isogenic lines (NILs) for four identified loci, and the lines exhibited significant differences for the associated traits. We found that two loci could improve the flower number and inflorescence architecture in the cultivar following introgression of the wild‐species alleles. These findings allowed us to construct a trait–locus network to help explain the correlations among different traits based on the pleiotropic or linked loci. Our results provide insights into the morphological changes between wild and cultivated tomatoes, and will help to identify key genes governing important agronomic traits for the molecular selection of elite tomato varieties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号