首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Ecologists and biogeographers usually rely on a single phylogenetic tree to study evolutionary processes that affect macroecological patterns. This approach ignores the fact that each phylogenetic tree is a hypothesis about the evolutionary history of a clade, and cannot be directly observed in nature. Also, trees often leave out many extant species, or include missing species as polytomies because of a lack of information on the relationship among taxa. Still, researchers usually do not quantify the effects of phylogenetic uncertainty in ecological analyses. We propose here a novel analytical strategy to maximize the use of incomplete phylogenetic information, while simultaneously accounting for several sources of phylogenetic uncertainty that may distort statistical inferences about evolutionary processes. We illustrate the approach using a clade‐wide analysis of the hummingbirds, evaluating how different sources of uncertainty affect several phylogenetic comparative analyses of trait evolution and biogeographic patterns. Although no statistical approximation can fully substitute for a complete and robust phylogeny, the method we describe and illustrate enables researchers to broaden the number of clades for which studies informed by evolutionary relationships are possible, while allowing the estimation and control of statistical error that arises from phylogenetic uncertainty. Software tools to carry out the necessary computations are offered.  相似文献   

3.
Gissi C  San Mauro D  Pesole G  Zardoya R 《Gene》2006,366(2):228-237
We explore whether phylogenetic analyses of the same sequence data set at the amino acid and nucleotide level are able to recover congruent topologies, as well as the advantages and limitations of both alternative approaches. As a case study, mitochondrial protein-coding genes were used to discern among competing hypotheses on the phylogenetic relationships of major anuran amphibian lineages. To properly address this phylogenetic question, the complete nucleotide sequences of the mitochondrial genomes of two archaeobatrachian species, Ascaphus truei and Pelobates cultripes, were determined anew. Bayesian and maximum likelihood phylogenetic inferences of the same sequence data set were performed based on both amino acid and nucleotide characters, with the latter analysed either as codons or as a reduced data set of first+second (P12) codon positions. In addition, likelihood-based ratio tests were performed to evaluate the support of alternative topologies. The different data sets arrived at congruent and highly supported topologies, suggesting a similar phylogenetic resolving power of the two character types provided that correctly selected sites and appropriate evolutionary models are used. The reconstructed anuran mitochondrial phylogeny supports the paraphyly of Archaeobatrachia, with Ascaphus as sister group to all the remaining anurans, and Pelobates as sister group of Neobatrachia. However, the employed tree reconstruction methods and likelihood-based ratio tests seemed to be negatively affected by the fast evolving sequences of neobatrachians, suggesting that the phylogeny of Anura here presented is not definitive, and needs further investigation using an extended taxon sampling.  相似文献   

4.
All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar‐feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species‐rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar‐feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well‐studied organisms such as phyllostomid bats.  相似文献   

5.
The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group.  相似文献   

6.
In species delimitation, a formidable goal in the discipline of systematic biology, we identify and describe species morphologically and ecologically based on phenotypic data. Efficient genotyping technologies produce genetic and genomic data with relative ease, which promotes species discovery and validation using genotype data. For the last two decades, we have seen the development of species delimitation methods based on genetic distances and phylogenetic trees using genotype data. However, speciation processes via evolutionary relationship among species were mostly divorced from species delimitation. Recent approaches to drawing species boundaries use multi-locus sequence data to account for evolutionary processes including speciation and gene flow. They allow us to learn of jointly speciation and species delimitation, leveraging computational and statistical techniques developed in population genetics and phylogenetics. Here, we review the recent progress in the development of species delimitation using genotype data and discuss the future outlook for the research of developing species delimitation methods.  相似文献   

7.
Species delimitation and identification can be arduous for taxa whose morphologic characters are easily confused, which can hamper global biodiversity assessments and pest species management. Exploratory methods of species delimitation that use DNA sequence as their primary information source to establish group membership and estimate putative species boundaries are useful approaches, complementary to traditional taxonomy. Termites of the genus Nasutitermes make interesting models for the application of such methods. They are dominant in Neotropical primary forests but also represent major agricultural and structural pests. Despite the prevalence, pivotal ecological role and economical impact of this group, the taxonomy of Nasutitermes species mainly depends on unreliable characters of soldier external morphology. Here, we generated robust species hypotheses for 79 Nasutitermes colonies sampled throughout French Guiana without any a priori knowledge of species affiliation. Sequence analysis of the mitochondrial cytochrome oxidase II gene was coupled with exploratory species‐delimitation tools, using the automatic barcode gap discovery method (ABGD) and a generalized mixed Yule‐coalescent model (GMYC) to propose primary species hypotheses (PSHs). PSHs were revaluated using phylogenetic analyses of two more loci (mitochondrial 16S rDNA and nuclear internal transcribed spacer 2) leading to 16 retained secondary species hypotheses (RSSH). Seven RSSHs, represented by 44/79 of the sampled colonies, were morphologically affiliated to species recognized as pests in the Neotropics, where they represent a real invasive pest potential in the context of growing ecosystem anthropization. Multigenic phylogenies based on combined alignments (1426–1784 bp) were also reconstructed to identify ancestral ecological niches and major‐pest lineages, revealing that Guyanese pest species do not form monophyletic groups.  相似文献   

8.
Taxonomy has traditionally relied on morphological and ecological traits to interpret and classify biological diversity. Over the last decade, technological advances and conceptual developments in the field of molecular ecology and systematics have eased the generation of genomic data and changed the paradigm of biodiversity analysis. Here we illustrate how traditional taxonomy has led to species designations that are supported neither by high throughput sequencing data nor by the quantitative integration of genomic information with other sources of evidence. Specifically, we focus on Omocestus antigai and Omocestus navasi, two montane grasshoppers from the Pyrenean region that were originally described based on quantitative phenotypic differences and distinct habitat associations (alpine vs. Mediterranean‐montane habitats). To validate current taxonomic designations, test species boundaries, and understand the factors that have contributed to genetic divergence, we obtained phenotypic (geometric morphometrics) and genome‐wide SNP data (ddRADSeq) from populations covering the entire known distribution of the two taxa. Coalescent‐based phylogenetic reconstructions, integrative Bayesian model‐based species delimitation, and landscape genetic analyses revealed that populations assigned to the two taxa show a spatial distribution of genetic variation that do not match with current taxonomic designations and is incompatible with ecological/environmental speciation. Our results support little phenotypic variation among populations and a marked genetic structure that is mostly explained by geographic distances and limited population connectivity across the abrupt landscapes characterizing the study region. Overall, this study highlights the importance of integrative approaches to identify taxonomic units and elucidate the evolutionary history of species.  相似文献   

9.
应用nrDNA ITS和ETS序列探讨了樟科Lauraceae黄肉楠属Actinodaphne的系统演化关系。对得到的3个序列矩阵(ITS、ETS和ITS/ETS),采用MP(maximum parsimony),ML(maximum likelihood)和Bayesian33分析方法进行了系统发育分析。结果显示,本文选的黄肉楠属Actinodaphne物种与所选的月棒族中的外类群靠近并混和在一起,进一步证实了本属为一个复系类群。结合对传统的形态学性状的重新认识,认为花序类型特征可能是重新界定黄肉楠属的最重要的性状,具有相同化序类型的物种可能具有相同的起源。然而,由于取样数量相对较少以及对矩阵的中.独分析存在一定的差异,还需更详细的研究来验证本文对黄肉楠属系统演化关系的假设,并进一步更精确地重建本属的系统发育关系。  相似文献   

10.
11.
Absent characters (negative characters) are difficult to assess and their correct interpretation as symplesiomorphies, synapomorphies or convergencies (homoplasies) is one of the greatest challenges in phylogenetic systematics. Different phylogenetic assessments often result in contradictory phylogenetic hypotheses, in which the direction of evolutionary changes is diametrically opposed. Especially in deciding between primary (plesiomorphic) and secondary (apomorphic) absence, false conclusions may be reached if only the outgroup comparison and the principle of parsimony are employed without attempting any biological evaluation or interpretation of characters. For example, in the higher‐level systematization of the Annelida and related taxa different assessments of absent characters have led to conflicting hypotheses about the phylogenetic relationships and the ground pattern of the annelid stem species. Varying phylogenetic interpretations regarding the absence of the chemosensory nuchal organs in the clitellates and their presence in polychaetes initiated a controversy that produced two alternative phylogenetic hypotheses: (1) the Clitellata are highly derived Annelida related to a subtaxon within the, in this case, paraphyletic ‘Polychaeta’ or (2) the Clitellata are comparatively primitive Annelida representing the sister group of a monophyletic taxon Polychaeta. In the former, the absence of nuchal organs in the Clitellata is regarded as a secondary character, in the latter as primary. As most Clitellata are either limnetic or terrestrial, we must ask which characters are plesiomorphies, taken from their marine stem species without changes. In addition to a thorough investigation and evaluation of clitellate characters, a promising approach to these questions is to look for such characters in limnetic and terrestrial annelids clearly not belonging to the Clitellata. A similar problem applies to the evaluation of the position of the Echiura, which lack both segmentation and nuchal organs. Evidence is presented that in both taxa these absent characters represent derived, apomorphic character states. The consequences for their phylogenetic position and the questionable monophyly of the Polychaeta are discussed. The conclusion drawn from morphological character assessments is in accordance with recently published hypotheses based on molecular data.  相似文献   

12.
Perhaps the most important recent advance in species delimitation has been the development of model‐based approaches to objectively diagnose species diversity from genetic data. Additionally, the growing accessibility of next‐generation sequence data sets provides powerful insights into genome‐wide patterns of divergence during speciation. However, applying complex models to large data sets is time‐consuming and computationally costly, requiring careful consideration of the influence of both individual and population sampling, as well as the number and informativeness of loci on species delimitation conclusions. Here, we investigated how locus number and information content affect species delimitation results for an endangered Mexican salamander species, Ambystoma ordinarium. We compared results for an eight‐locus, 137‐individual data set and an 89‐locus, seven‐individual data set. For both data sets, we used species discovery methods to define delimitation models and species validation methods to rigorously test these hypotheses. We also used integrated demographic model selection tools to choose among delimitation models, while accounting for gene flow. Our results indicate that while cryptic lineages may be delimited with relatively few loci, sampling larger numbers of loci may be required to ensure that enough informative loci are available to accurately identify and validate shallow‐scale divergences. These analyses highlight the importance of striking a balance between dense sampling of loci and individuals, particularly in shallowly diverged lineages. They also suggest the presence of a currently unrecognized, endangered species in the western part of A. ordinarium's range.  相似文献   

13.
Cortinarius is the most species rich genus of mushroom forming fungi with an estimated 2000 spp. worldwide. However, species delimitation within the genus is often controversial. This is particularly true in the section Calochroi (incl. section Fulvi), where the number of accepted taxa in Europe ranges between c.60 and c.170 according to different taxonomic schools. Here, we evaluated species delimitation within this taxonomically difficult group of species and estimated their phylogenetic relationships. Species were delimited by phylogenetic inference and by comparison of ITS sequence data in combination with morphological characters. A total of 421 ITS sequences were analyzed, including data from 53 type specimens. The phylogenetic relationships of the identified species were estimated by analyzing ITS data in combination with sequence data from the two largest subunits of RNA polymerase II (RPB1 and RPB2). Seventy-nine species were identified, which are believed to constitute the bulk of the diversity of this group in Europe. The delimitation of species based on ITS sequences is more consistent with a conservative morphological species concept for most groups. ITS sequence data from 30 of the 53 types were identical to other taxa, and most of these can be readily treated as synonyms. This emphasizes the importance of critical analysis of collections before describing new taxa. The phylogenetic separation of species was, in general, unambiguous and there is considerable potential for using ITS sequence data as a barcode for the group. A high level of homoplasy and phenotypic plasticity was observed for morphological and ecological characters. Whereas most species and several minor lineages can be recognized by morphological and ecological character states, these same states are poor indicators at higher levels.  相似文献   

14.
15.
The historical definition of adaptations has come into wide use as comparative biologists have applied methods of phylogenetic analysis to a variety of evolutionary problems. Here we point out a number of difficulties in applying historical methods to the study of adaptation, especially in cases where a trait has arisen but once. In particular, the potential complexity of the genetic correlations among phenotypic traits, performance variables and fitness makes inferring past patterns of selection from comparative data difficult. A given pattern of character distribution may support many alternative hypotheses of mechanism. While phylogenetic data are limited in their ability to reveal evolutionary mechanisms, they have always been an important source of adaptive hypotheses and will continue to be so.  相似文献   

16.
Previous studies of the phylogeny of land plants based on analysis of 18S ribosomal DNA (rDNA) sequences have generally found weak support for the relationships recovered and at least some obviously spurious relationships, resulting in equivocal inferences of land plant phylogeny. We hypothesized that greater sampling of both characters and taxa would improve inferences of land plant phylogeny based on 18S rDNA sequences. We therefore conducted a phylogenetic analysis of complete (or nearly complete) 18S rDNA sequences for 93 species of land plants and 7 green algal relatives. Parsimony analyses with equal weighting of characters and characters state changes and parsimony analyses weighting (1) stem bases half as much as loop bases and (2) transitions half as much as transversions did not produce substantially different topologies. Although the general structure of the shortest trees is consistent with most hypotheses of land plant phylogeny, several relationships, particularly among major groups of land plants, appear spurious. Increased character and taxon sampling did not substantially improve the performance of 18S rDNA in phylogenetic analyses of land plants, nor did analyses designed to accommodate variation in evolutionary rates among sites. The rate and pattern of 18S rDNA evolution across land plants may limit the usefulness of this gene for phylogeny reconstruction at deep levels of plant phylogeny. We conclude that the mosaic structure of 18S rDNA, consisting of highly conserved and highly variable regions, may contain historical signal at two levels. Rapidly evolving regions are informative for relatively recent divergences (e.g., within angiosperms, seed plants, and ferns), but homoplasy at these sites makes it difficult to resolve relationships among these groups. At deeper levels, changes in the highly conserved regions of small-subunit rDNAs provide signal across all of life. Because constraints imposed by the secondary structure of the rRNA may affect the phylogenetic information content of 18S rDNA, we suggest that 18S rDNA sequences be combined with other data and that methods of analysis be employed to accommodate these differences in evolutionary patterns, particularly across deep divergences in the tree of life.  相似文献   

17.
With the continued adoption of genome‐scale data in evolutionary biology comes the challenge of adequately harnessing the information to make accurate phylogenetic inferences. Coalescent‐based methods of species tree inference have become common, and concatenation has been shown in simulation to perform well, particularly when levels of incomplete lineage sorting are low. However, simulation conditions are often overly simplistic, leaving empiricists with uncertainty regarding analytical tools. We use a large ultraconserved element data set (>3,000 loci) from rattlesnakes of the Crotalus triseriatus group to delimit lineages and estimate species trees using concatenation and several coalescent‐based methods. Unpartitioned and partitioned maximum likelihood and Bayesian analysis of the concatenated matrix yield a topology identical to coalescent analysis of a subset of the data in bpp . ASTRAL analysis on a subset of the more variable loci also results in a tree consistent with concatenation and bpp , whereas the SVDquartets phylogeny differs at additional nodes. The size of the concatenated matrix has a strong effect on species tree inference using SVDquartets , warranting additional investigation on optimal data characteristics for this method. Species delimitation analyses suggest up to 16 unique lineages may be present within the C. triseriatus group, with divergences occurring during the Neogene and Quaternary. Network analyses suggest hybridization within the group is relatively rare. Altogether, our results reaffirm the Mexican highlands as a biodiversity hotspot and suggest that coalescent‐based species tree inference on data subsets can provide a strongly supported species tree consistent with concatenation of all loci with a large amount of missing data.  相似文献   

18.
Adaptive landscapes have served as fruitful guides to evolutionary research for nearly a century. Current methods guided by landscape frameworks mostly utilize evolutionary modeling (e.g., fitting data to Ornstein–Uhlenbeck models) to make inferences about adaptive peaks. Recent alternative methods utilize known relationships between phenotypes and functional performance to derive information about adaptive landscapes; this information can then help explain the distribution of species in phenotypic space and help infer the relative importance of various functions for guiding diversification. Here, data on performance for three turtle shell functions–strength, hydrodynamic efficiency, and self‐righting ability–are used to develop a set of predicted performance optima in shell shape space. The distribution of performance optima shows significant similarity to the distribution of existing turtle species and helps explain the absence of shells in otherwise anomalously empty regions of morphospace. The method outperforms a modeling‐based approach in inferring the location of reasonable adaptive peaks and in explaining the shape of the phenotypic distributions of turtle shells. Performance surface‐based methods allow researchers to more directly connect functional performance with macroevolutionary diversification, and to explain the distribution of species (including presences and absences) across phenotypic space.  相似文献   

19.
BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.  相似文献   

20.
RAD-tag sequencing is a promising method for conducting genome-wide evolutionary studies. However, to date, only a handful of studies empirically tested its applicability above the species level. In this communication, we use RAD tags to contribute to the delimitation of species within a diverse genus of deep-sea octocorals, Chrysogorgia, for which few classical genetic markers have proved informative. Previous studies have hypothesized that single mitochondrial haplotypes can be used to delimit Chrysogorgia species. On the basis of two lanes of Illumina sequencing, we inferred phylogenetic relationships among 12 putative species that were delimited using mitochondrial data, comparing two RAD analysis pipelines (Stacks and PyRAD). The number of homologous RAD loci decreased dramatically with increasing divergence, as >70% of loci are lost when comparing specimens separated by two mutations on the 700-nt long mitochondrial phylogeny. Species delimitation hypotheses based on the mitochondrial mtMutS gene are largely supported, as six out of nine putative species represented by more than one colony were recovered as discrete, well-supported clades. Significant genetic structure (correlating with geography) was detected within one putative species, suggesting that individuals characterized by the same mtMutS haplotype may belong to distinct species. Conversely, three mtMutS haplotypes formed one well-supported clade within which no population structure was detected, also suggesting that intraspecific variation exists at mtMutS in Chrysogorgia. Despite an impressive decrease in the number of homologous loci across clades, RAD data helped us to fine-tune our interpretations of classical mitochondrial markers used in octocoral species delimitation, and discover previously undetected diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号