首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim Climate is recognized for the significant role it plays in the global distribution of plant species diversity. We test the extent to which two aspects of climate, namely temperature and precipitation, explain the spatial distribution of high taxonomic groupings (plant families) at a regional spatial resolution (the Neotropics). Our goal is to provide a quantitative and comparative framework for identifying the local effects of climate on the familial composition of tropical forests by identifying the influence of climate on the number of individuals and the number of species within a given family. Location One hundred and forty‐four 0.1‐ha forest transect sites from the Neotropics (19.8°N–27.0°S and 40.1°W–105.1°W). Data were originally collected by A.H. Gentry. Methods Spatial variability in the abundance (density) and species richness of 159 tropical plant families across a range of predominately lowland Neotropical landscapes were attributed to eight temperature and precipitation measures using the eigen analysis method of two‐field joint single‐value decomposition. Results Climate significantly affects the within‐clade diversity of several ecologically important Neotropical plant families. Intrafamily abundance and richness covary with temperature in some families (e.g. Fabaceae) and with precipitation in others (e.g. Bignoniaceae, Arecaceae), with differing climatic preferences observed even among co‐occurring families. In addition, the family‐level composition of Neotropical forests, in both abundance and richness, appears to be influenced more by temperature than by precipitation. Among lowland families, only Asteraceae increased in species richness with decreasing temperature, although several families, including Melastomataceae and Rubiaceae, are more abundant at lower temperatures. Main conclusions Although plant diversity is known to vary as a function of climate at the species level, we document clear climatic preferences even at the rank of family. Temperature plays a stronger role in governing the familial composition of tropical forests, particularly in the richness of families, than might be expected given its narrow annual and diurnal range in the tropics. Although other environmental or geographic variables that covary with temperature may be more causally linked to diversity differences than temperature itself, the results nonetheless identify the taxonomic components of tropical forest composition that may be most affected by future climatic changes.  相似文献   

2.
Aim To test the hypothesis that animal communities within environmentally relatively uniform lowland forests are characterized by low beta diversity, both in tropical and in temperate areas. Location Lowland forests in the basins of the Sepik and Ramu rivers in New Guinea, the Amazon river in Bolivia, and the Elbe and Dyje rivers in the Czech Republic. Methods A network of 5–6 study sites spanning distances from 20–80 to 300–500 km in each study area was systematically surveyed for all frogs, using visual detection and call tracking. The community data were analysed for alpha and beta diversity. Results Local (alpha) diversity of frog communities was similar in the two tropical areas, New Guinea (mean ± SE of 22 ± 1.4 species per site) and Amazonia (24 ± 1.7 species), but was significantly lower in Europe (8 ± 0.8 species). In Amazonia, 36 of the total of 70 species were recorded from single sites. In contrast, widespread species dominated in Europe, whereas New Guinea exhibited an intermediate pattern with both local and widespread species well represented. The rate of species accumulation across different sites was lowest in Europe, intermediate in New Guinea and highest in Amazonia. The regional species diversity, expressed as the combined number of species from five study sites, was 1.5 times higher than the local species diversity at a single site in Europe, 2.0 times higher in New Guinea and 2.7 times higher in Amazonia. The proportion of species shared between communities decreased with geographic distance in New Guinea and Europe, but not in Amazonia. Main conclusions Frog communities in the lowland tropical rain forests of New Guinea and Amazonia had similar numbers of species, but differed in their beta diversity. More species in Amazonia had restricted distributions than in New Guinea. Both tropical areas had markedly higher alpha and beta diversity than the temperate area in Europe.  相似文献   

3.
1. Gall‐forming insects are a guild of endophages that exhibit a high level of fidelity to their host plants, however, their level of host specificity is seldom explicitly tested. 2. Gall‐forming insect taxa from 32 species of woody tropical plants with resolved phylogenetic relationships were collected and reared, representing 15 families from all the major clades of angiosperms, at three lowland rainforest locations in Madang, Papua New Guinea (PNG). 3. More than 8800 galled plant parts were collected from 78 gall morphospecies at an average of 2.4 per host plant. Total species richness at the sampling sites was estimated to be 83–89. All but one morphospecies were monophagous resulting in an effective specialisation of 0.98. 4. Specific leaf weight, foliar nitrogen, the presence of latex, and the successional preference of plant species all gave a phylogenetic signal, but only plant successional preference influenced the species richness of galls on analysis of phylogenetically independent contrasts. Gall species were distributed randomly among host plant species and showed no preference for any particular plant lineage. Furthermore, most gall‐forming taxa were evenly dispersed across the host plant phylogeny. 5. In the tropical rainforests of New Guinea, gall‐forming insects are ubiquitous but occur in species‐poor assemblages. Local species richness is closely tied to the diversity of angiosperms owing to very high host specificity. 6. Finally, galler species richness data from the literature across habitats and latitudes were compared and suggest that tropical rainforests may be richer in galls than previously acknowledged.  相似文献   

4.
Western Amazonia is known to harbour some of Earth's most diverse forests, but previous floristic analyses have excluded peatland forests which are extensive in northern Peru and are among the most environmentally extreme ecosystems in the lowland tropics. Understanding patterns of tree species diversity in these ecosystems is important both for quantifying beta‐diversity in this region, and for understanding determinants of diversity more generally in tropical forests. Here we explore patterns of tree diversity and composition in two peatland forest types – palm swamps and peatland pole forests – using 26 forest plots distributed over a large area of northern Peru. We place our results in a regional context by making comparisons with three other major forest types: terra firme forests (29 plots), white‐sand forests (23 plots) and seasonally‐flooded forests (11 plots). Peatland forests had extremely low (within‐plot) alpha‐diversity compared with the other forest types that were sampled. In particular, peatland pole forests had the lowest levels of tree diversity yet recorded in Amazonia (20 species per 500 stems, Fisher's alpha 4.57). However, peatland pole forests and palm swamps were compositionally different from each other as well as from other forest types in the region. Few species appeared to be peatland endemics. Instead, peatland forests were largely characterised by a distinctive combination of generalist species and species previously thought to be specialists of other habitats, especially white‐sand forests. We suggest that the transient nature and extreme environmental conditions of Amazonian peatland ecosystems have shaped their current patterns of tree composition and diversity. Despite their low alpha‐diversity, the unique combination of species found in tree communities in Amazonian peatlands augment regional beta‐diversity. This contribution, alongside their extremely high carbon storage capacity and lack of protection at national level, strengthens their status as a conservation priority.  相似文献   

5.
One of the most intriguing and complex characteristics of reproductive phenology in tropical forests is high diversity within and among forests. To understand such diversity, Newstrom et al. provided a systematic framework for the classification of tropical flowering phenology. They adopted frequency and regularity as criteria with priority, and classified plants in La Selva, Costa Rica, where most plants reproduced more than once a year irregularly. Many other studies have demonstrated annual cycles corresponding to rainfall patterns at the community level in Neotropical forests, including La Selva. On the other hand, supraannual flowering synchronized among various plant species, called general flowering, is known from aseasonal lowland dipterocarp forests in Southeast Asia. Within both forests, a wide spectrum of flowering patterns is found. This range of patterns suggests the great potential of tropical phenological studies to explore the selective pressures on phenology. Various abiotic and biotic factors can be selective agents. The shared pollinators hypothesis suggests that plant species sharing pollinators segregate flowering temporarily to minimize interspecific overlap in flowering times and thus minimize ineffective pollination or competition for pollinators, indicating strong phylogenetic constraints in timing and variation of flowering. Comparison of phenology within and among forests may help our understanding of phenological diversity. Attempts are now being made to develop a common language to communicate concepts and render interpretations of data more compatible among investigators and to create a network to promote comparative studies. Received: September 8, 2000 / Accepted: January 30, 2001  相似文献   

6.

Objectives

Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests.

Methods

We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination.

Results

Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions.

Conclusions/Significance

Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of continuous distributions and continental connectivity have significant implications for interpreting rainforest evolutionary history and current day ecological processes, and for managing rainforest diversity in changing circumstances.  相似文献   

7.
Litter quality and diversity are major factors structuring decomposer communities. However, little is known on the relationship between litter quality and the community structure of soil protists in tropical forests. We analyzed the diversity, density, and community structure of a major group of soil protists of tropical montane rainforests, that is, testate amoebae. Litterbags containing pure and mixed litter of two abundant tree species at the study sites (Graffenrieda emarginata and Purdiaea nutans) differing in nitrogen concentrations were exposed in the field for 12?months. The density and diversity of testate amoebae were higher in the nitrogen-rich Graffenrieda litter suggesting that nitrogen functions as an important driving factor for soil protist communities. No additive effects of litter mixing were found, rather density of testate amoebae was reduced in litter mixtures as compared to litterbags with Graffenrieda litter only. However, adding of high-quality litter to low-quality litter markedly improved habitat quality, as evaluated by the increase in diversity and density of testate amoebae. The results suggest that local factors, such as litter quality, function as major forces shaping the structure and density of decomposer microfauna that likely feed back to decomposition processes.  相似文献   

8.
Background: Variation in the distribution and abundance of woody plants as consequence of disturbances such as fire may be explained by lineage age.

Aims: We tested whether lowland tropical tree lineages that colonise secondary forests are more late-diverging than clades from old-growth forests, and whether tree phylogenetic beta diversity from old-growth to secondary forests is higher in burned than non-burned secondary forests.

Methods: We sampled tree communities in old-growth forests and in secondary forests with distinct disturbance histories (burned and unburned). We calculated mean family age in each plot, and tested for differences among forest types using ANOVA. A phylogenetic fuzzy-weighting procedure was employed to generate a matrix describing the abundance of tree clades per plot, which was then analysed using a principal coordinate analysis.

Results: Most clades found in old-growth forests were underrepresented in secondary forests, which have been heavily colonised by a single species from a young lineage that is not found in old-growth forests. Phylogenetic beta diversity was higher between unburned secondary forests and old-growth forests than between burned secondary forests and old-growth forests.

Conclusions: The capacity of Neotropical trees to colonise secondary forests and persist after fire disturbance may be related to the age of distinct lineages.  相似文献   

9.
Studies in the tropics suggest a regional similarity in survival rates of adult birds; however, this literature often overlooks species in semi-arid tropical environments. Bird survival in seasonally dry environments (e.g. seasonally dry tropical forests (SDTFa)) may be lower than that in more constantly wet areas (e.g. tropical rainforests (TRFs)), especially if the birds are negatively affected by seasonal rainfall or food-limitation. However, survival could be similar across these tropical environments, as the asymmetry between young and adult mortality tends to be high in all tropical areas, and the higher risk of mortality in young animals may favour adult survival (residual reproductive investment) regardless of the local climatic conditions. To fill this knowledge gap, we tested the hypothesis that bird survival is similar between seasonally dry (SDTF) and constantly wet (TRF) Neotropical environments. We estimated the apparent survival of 27 South American bird populations from three SDTF areas and 39 populations from a TRF. Apparent survival was estimated from Cormack–Jolly–Seber (CJS) models fitted using a Bayesian structure and the resulting variation in survival rates between study areas and with body mass was explored using a Bayesian phylogenetic mixed model. Apparent annual survival of passerines did not differ between areas (geometrical mean of survival: SDTF = 0.50, 0.56, 0.64; TRF = 0.58), but body mass was positively associated with survival. The variation in bird survival was partially explained by phylogenetic relationships among species. Our results suggest that bird survival is regionally similar in Neotropical forests, despite the climatic variation. We discuss possible physiological and behavioural mechanisms adopted by birds in SDTFs to attenuate effects of environmental seasonality on survival.  相似文献   

10.
Although previous studies, mostly based on microscopy analyses of a few groups of protists, have suggested that protists are abundant and diverse in litter and moss habitats, the overall diversity of moss and litter associated protists remains elusive. Here, high‐throughput environmental sequencing was used to characterize the diversity and community structure of litter‐ and moss‐associated protists along a gradient of soil drainage and forest primary productivity in a temperate rainforest in British Columbia. We identified 3262 distinct protist OTUs from 36 sites. Protists were strongly structured along the landscape gradient, with a significant increase in alpha diversity from the blanket bog ecosystem to the zonal forest ecosystem. Among all investigated environmental variables, calcium content was the most strongly associated with the community composition of protists, but substrate composition, plant cover and other edaphic factors were also significantly correlated with these communities. Furthermore, a detailed phylogenetic analysis of unicellular opisthokonts identified OTUs covering most lineages, including novel OTUs branching with Discicristoidea, the sister group of Fungi, and with Filasterea, one of the closest unicellular relatives to animals. Altogether, this study provides unprecedented insight into the community composition of moss‐ and litter‐associated protists.  相似文献   

11.
Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a "hump-shaped" pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This "time-for-speciation" effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome.  相似文献   

12.
Using complementary metrics to evaluate phylogenetic diversity can facilitate the delimitation of floristic units and conservation priority areas. In this study, we describe the spatial patterns of phylogenetic alpha and beta diversity, phylogenetic endemism, and evolutionary distinctiveness of the hyperdiverse Ecuador Amazon forests and define priority areas for conservation. We established a network of 62 one‐hectare plots in terra firme forests of Ecuadorian Amazon. In these plots, we tagged, collected, and identified every single adult tree with dbh ≥10 cm. These data were combined with a regional community phylogenetic tree to calculate different phylogenetic diversity (PD) metrics in order to create spatial models. We used Loess regression to estimate the spatial variation of taxonomic and phylogenetic beta diversity as well as phylogenetic endemism and evolutionary distinctiveness. We found evidence for the definition of three floristic districts in the Ecuadorian Amazon, supported by both taxonomic and phylogenetic diversity data. Areas with high levels of phylogenetic endemism and evolutionary distinctiveness in Ecuadorian Amazon forests are unprotected. Furthermore, these areas are severely threatened by proposed plans of oil and mining extraction at large scales and should be prioritized in conservation planning for this region.  相似文献   

13.
Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below‐ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km2). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity–area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine‐scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage‐specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.  相似文献   

14.
Neotropical rainforests exhibit high levels of endemism and diversity. Although the evolutionary genetics of plant diversification has garnered increased interest, phylogeographic studies of widely distributed species remain scarce. Here we describe chloroplast and nuclear variation patterns in Schizolobium parahyba (Fabaceae), a widespread tree in Neotropical rainforests that harbor two varieties with a disjunct distribution. Chloroplast and nuclear sequence analyses yielded 21 and 4 haplotypes, respectively. Two genetic diversity centers that correlate with the two known varieties were identified: the Southeastern Atlantic forest and the Amazonian basin. In contrast, the populations from southern and northeastern Atlantic forests and Andean-Central American forests exhibited low levels of genetic diversity and divergent haplotypes, likely related to historical processes that impact the flora and fauna in these regions, such as a founder's effect after dispersion and demographic expansion. Phylogeographic and demographic patterns suggest that episodes of genetic isolation and dispersal events have shaped the evolutionary history for this species, and different patterns have guided the evolution of S. parahyba. Moreover, the results of this study suggest that the dry corridor formed by Cerrado and Caatinga ecoregions and the Andean uplift acted as barriers to this species' gene flow, a picture that may be generalized to most of the plant biodiversity tropical woodlands and forests. These results also reinforce the importance of evaluating multiple genetic markers for a more comprehensive understanding of population structure and history. Our results provide insight into the conservation efforts and ongoing work on the genetics of population divergence and speciation in these Neotropical rainforests.  相似文献   

15.
The species richness of eukaryotes in the hypersaline environment is generally thought to be low. However, recent studies showed a high degree of phylogenetic novelty at these extreme conditions with variable chemical parameters. These findings call for a more thorough look into the species richness of hypersaline environments. In this study, various hypersaline lakes (salars, 1–348 PSU) as well as further aquatic ecosystems of northern Chile were investigated regarding diversity of heterotrophic protists by metabarcoding studies of surface water samples. Investigations of genotypes of 18S rRNA genes showed a unique community composition in nearly each salar and even among different microhabitats within one salar. The genotype distribution showed no clear connection to the composition of main ions at the sampling sites, but protist communities from similar salinity ranges (either hypersaline, hyposaline or mesosaline) clustered together regarding their OTU composition. Salars appeared to be fairly isolated systems with only little exchange of protist communities where evolutionary lineages could separately evolve.  相似文献   

16.
Increasing temperatures are predicted to have profound effects on montane ecosystems. In tropical forests, biotic attrition may reduce lowland diversity if losses of species due to upslope range shifts are not matched by influxes of warmer‐adapted species, either because there are none or their dispersal is impeded. Australian rainforests consist of a north–south chain of patches, broken by dry corridors that are barriers to the dispersal of rainforest species. These rainforests have repeatedly contracted and expanded during Quaternary glacial cycles. Many lowland rainforests are expansions since the Last Glacial Maximum and may, therefore, show a signal of historical biotic attrition. We surveyed ants from replicated sites along three rainforest elevational transects in eastern Australia spanning 200 to 1200 m a.s.l. and nearly 14° of latitude. We examined elevational patterns of ant diversity and if there was possible evidence of lowland biotic attrition. Each transect was in a different biogeographic region; the Australian Wet Tropics (16.3°S), the central Queensland coast (21.1°S) and subtropical south‐eastern Queensland (28.1°S). We calculated ant species density (mean species per site) and species richness (estimated number of species by incorporating site‐to‐site species turnover) within elevational bands. Ant species density showed no signal of lowland attrition and was high at low and mid‐elevations and declined only at high elevations at all transects. Similarly, estimated species richness showed no evidence of lowland attrition in the Wet Tropics and subtropical south‐east Queensland; species richness peaked at low elevations and declined monotonically with increasing elevation. Persistence of lowland rainforest refugia in the Wet Tropics during the Last Glacial Maximum and latitudinal range shifts of ants in subtropical rainforests during the Holocene climatic optimum may have counteracted lowland biotic attrition. In central Queensland, however, estimated richness was similar in the lowlands and mid‐elevations, and few ant species were indicative of lower elevations. This may reflect historical biotic attrition due perhaps to a lack of lowland glacial refugia and the isolation of this region by a dry forest barrier to the north.  相似文献   

17.
A rapidly increasing effort to merge functional community ecology and phylogenetic biology has increased our understanding of community assembly. However, studies using both phylogenetic‐ and trait‐based methods have been mainly conducted in old‐growth forests, with fewer studies in human‐disturbed communities, which play an increasingly important role in providing ecosystem services as primary forests are degraded. We used data from 18 1‐ha plots in tropical old‐growth forests and secondary forests with different disturbance histories (logging and shifting cultivation) and vegetation types (tropical lowland and montane forests) on Hainan Island, southern China. The distributions of 11 functional traits were compared among these six forest types. We used a null model approach to assess the effects of disturbance regimes on variation in response and effect traits and community phylogenetic structure across different stem sizes (saplings, treelets, and adult trees) and spatial scales (10–50 m). We found significant differences in the distribution of functional traits in highly disturbed lowland sites versus other forest types. Many individuals in highly disturbed lowland sites were deciduous, spiny, with non‐fleshy fruits and seeds dispersed passively or by wind, and low SLA. The response traits of coexisting species were clustered in all sites except for highly disturbed lowland sites where evenness was evident. There were different distributions of effect traits for saplings and treelets among different forest types but adult trees showed stronger clustering of trait values with increasing spatial scale among all forest types. Phylogenetic clustering predominated across all size classes and spatial scales in the highly disturbed lowland sites, and evenness in other forest types. High disturbance can lead to abiotic filtering, generating a community dominated by closely related species with disturbance‐adapted traits, where biotic interactions play a relatively minor role. In lightly disturbed and old growth forests, multiple processes simultaneously drive the community assembly, but biotic processes dominate at the fine scale.  相似文献   

18.
Aims Environmental gradients are drivers of species diversity; however, we know relatively little about the evolutionary processes underlying these relationships. A potentially powerful approach to studying diversity gradients is to quantify the phylogenetic structure within and between assemblages arrayed along broad spatial and environmental gradients. Here, we evaluate the phylogenetic structure of plant assemblages along an environmental gradient with the expectation that the habitat specialization of entire lineages is an important evolutionary pattern influencing the structure of tree communities along environmental gradients.Methods We evaluated the effect of several environmental variables on the phylogenetic structure of plant assemblages in 145 plots distributed in northwestern South America that cover a broad environmental gradient. The phylogenetic alpha diversity was quantified for each plot and the phylogenetic beta diversity between each pair of plots was also quantified. Both the alpha and beta diversity measures were then related to spatial and environmental gradients in the study system.Important findings We found that gradients in temperature and potential evapotranspiration have a strong relationship with the phylogenetic alpha diversity in our study system, with phylogenetic overdispersion in low temperatures and phylogenetic clustering at higher temperatures. Further, the phylogenetic beta diversity between two plots increases with an increasing difference in temperature, whereas annual precipitation was not a significant predictor of community phylogenetic turnover. We also found that the phylogenetic structure of the plots in our study system was related to the degree of seasonal flooding and seasonality in precipitation. In particular, more stressful environments such as dry forests and flooded forests showed phylogenetic clustering. Finally, in contrast with previous studies, we find that phylogenetic beta diversity was not strongly related to the spatial distance separating two forest plots, which may be the result of the importance of the three independent mountain ranges in our study system, which generate a high degree of environmental variation over very short distances. In conclusion, we found that environmental gradients are important drivers of both phylogenetic alpha and phylogenetic beta diversities in these forests over spatial distance.  相似文献   

19.
Aim General patterns of biodiversity, such as latitudinal gradients and species‐area relationships, are found consistently in a wide range of organisms, but recent results for protist diversity suggest that organisms shorter than 2 mm do not display such patterns. We tested this prediction in bdelloid rotifers, pluricellular metazoans smaller than 2 mm, but with size and ecology comparable to protists. Location A single valley in northern Italy was surveyed in detail and compared to all available faunistic data on bdelloids worldwide. Methods We analysed 171 local assemblages of bdelloid rotifers living in 5 systems of dry mosses and submerged mosses in running water and in lakes. We compared patterns of alpha, beta, and gamma diversity, and nestedness of metacommunities, with those known from protists and larger organisms. Results Bdelloid rotifers showed low local species richness (alpha diversity), with strong habitat selection, as observed in larger organisms. The number of species differed among systems, with a higher number of species in dry than in aquatic mosses. There was no hierarchical structure or exclusion of species in the metacommunity pattern within each system. Local diversity for the entire valley was surprisingly high compared with worldwide bdelloid diversity, similar to observed patterns in protists. Main Conclusions Bdelloid rotifers have some of the peculiarities of protist biodiversity, although at slightly different spatial scales, thus confirming the idea of a major change in biodiversity patterns among organisms shorter than 2 mm. However, bdelloids show stronger habitat selection than protists. We suggest two possible explanations for the observed patterns: (1) dispersal is very rare, and not all bdelloid clones are arriving everywhere; and (2) dispersal is effective in displacing propagules, but environmental heterogeneity is very high and prevents many species from colonizing a given patch of moss.  相似文献   

20.
Selective logging is practiced extensively within tropical rainforests of south‐east Asia, and its impact on local biodiversity is well documented. Little is known, however, about the impact of selective logging on patterns of spatial heterogeneity of species. We set out to test the hypothesis that selective logging will lead to a homogenization of the associated faunal assemblages, using moths (Lepidoptera) as our subject taxa. Large‐scale transects were established within primary and post‐logging lowland mixed dipterocarp rainforests around the Danum Valley Conservation Area and surroundings, Sabah, Malaysia (4°50′N–5°00′N and 117°35′E–117°45′E). Five study sites were located within each habitat with geometrically increasing inter‐site distances. Macro‐moths plus Pyraloidea were sampled by light trapping in 2007 and 2008. Vegetation state was also measured at each site. A clear distance–decay relationship (decreasing assemblage similarity with increasing geographic distances) was observed in primary forest but was absent in the post‐logging forest. Large, comparable numbers of macro‐moth species were found in both primary and post‐logging forests. There were no significant differences in moth assemblage composition between primary and post‐logging forests. There are important structural differences between primary and post‐logging forests reflected in the moth assemblages. A two‐stage hypothesis combining both neutral and niche concepts is probably the most parsimonious explanation of these results. First, the composition of the moth assemblage is almost certainly determined locally by the variety of plant–hosts available to larvae, with the plants representing important niche dimensions for the moth species. Second the turnover (or lack of same) in the underlying plant assemblage probably reflects clumping and, in turn, dispersal capacity of the commoner plants in each forest type. Although the impact of selective logging may be subtle, this study suggests that selective logging results in the spatial homogenization of macro‐moth assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号