共查询到20条相似文献,搜索用时 15 毫秒
1.
Rosemary J. Moorhouse‐Gann Eleanor F. Kean Gareth Parry Sonia Valladares Elizabeth A. Chadwick 《Ecology and evolution》2020,10(13):6395-6408
- Variation in predator diet is a critical aspect of food web stability, health, and population dynamics of predator/ prey communities. Quantifying diet, particularly among cryptic species, is extremely challenging, however, and differentiation between demographic subsets of populations is often overlooked.
- We used prey remains and data taken postmortem from otter Lutra lutra to determine the extent to which dietary variation in a top predator was associated with biotic, spatial, and temporal factors.
- Biotic data (e.g., sex, weight, and length) and stomach contents were taken from 610 otters found dead across England and Wales between 1994 and 2010. Prey remains were identified to species where possible, using published keys and reference materials. Multi‐model inference followed by model prediction was applied to test for and visualize the nature of associations.
- Evidence for widespread decline in the consumption of eels (Anguilla anguilla) reflected known eel population declines. An association between eel consumption and otter body condition suggested negative consequences for otter nutrition. Consumption of Cottus gobio and stickleback spp. increased, but was unlikely to compensate (there was no association with body condition). More otters with empty stomachs were found over time. Otter sex, body length, and age‐class were important biotic predictors of the prey species found, and season, region, and distance from the coast were important abiotic predictors.
- Our study is unique in its multivariate nature, broad spatial scale, and long‐term dataset. Inclusion of biotic data allowed us to reveal important differences in costs and benefits of different prey types, and differences between demographic subsets of the population, overlaid on spatial and temporal variation. Such complexities in otter diet are likely to be paralleled in other predators, and detailed characterization of diet should not be overlooked in efforts to conserve wild populations.
2.
Guy Boivin Caroline Roger Daniel Coderre Eric Wajnberg 《Entomologia Experimentalis et Applicata》2010,135(1):48-55
Under natural conditions, generalist predatory insects have to cope with a variety of potential prey species that are not all equally suitable. Under these circumstances, learning may be adaptive if it allows adjustment to variations in resource quality and availability. Under laboratory conditions, we examined the learning ability and memory in the prey selection process of larvae of the predatory coccinellid Coleomegilla maculata ssp. lengi Timberlake (Coleoptera: Coccinellidae). Using choice tests, we studied prey rejection behaviour of C. maculata fourth instars towards prey of different quality and we also tested the influence of hunger and prior experience with other food types on the prey rejection behaviour of coccinellid larvae. Coleomegilla maculata larvae gradually changed their behaviour and rejected low‐quality hosts more frequently, whereas high‐quality hosts were nearly always accepted. After 48 h, the learned behaviour appeared to be partially forgotten. Hunger and experience with other food types prior to the test had little effect on the gradual change of behaviour but the quality of the food ingested influenced the initial level of prey rejection. Our results demonstrate that (1) C. maculata larvae can adjust their prey selection behaviour with experience to reject progressively less suitable prey, and (2) previous experience with other prey types can influence their initial preference. 相似文献
3.
Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication 总被引:1,自引:0,他引:1
Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short‐range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle‐web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey. 相似文献
4.
Irene M. van Schrojenstein Lantman Eero J. Vesterinen Lionel R. Hertzog An Martel Kris Verheyen Luc Lens Dries Bonte 《Ecology and evolution》2021,11(12):8295
Trophic interactions may strongly depend on body size and environmental variation, but this prediction has been seldom tested in nature. Many spiders are generalist predators that use webs to intercept flying prey. The size and mesh of orb webs increases with spider size, allowing a more efficient predation on larger prey. We studied to this extent the orb‐weaving spider Araneus diadematus inhabiting forest fragments differing in edge distance, tree diversity, and tree species. These environmental variables are known to correlate with insect composition, richness, and abundance. We anticipated these forest characteristics to be a principle driver of prey consumption. We additionally hypothesized them to impact spider size at maturity and expect shifts toward larger prey size distributions in larger individuals independently from the environmental context. We quantified spider diet by means of metabarcoding of nearly 1,000 A. diadematus from a total of 53 forest plots. This approach allowed a massive screening of consumption dynamics in nature, though at the cost of identifying the exact prey identity, as well as their abundance and putative intraspecific variation. Our study confirmed A. diadematus as a generalist predator, with more than 300 prey ZOTUs detected in total. At the individual level, we found large spiders to consume fewer different species, but adding larger species to their diet. Tree species composition affected both prey species richness and size in the spider''s diet, although tree diversity per se had no influence on the consumed prey. Edges had an indirect effect on the spider diet as spiders closer to the forest edge were larger and therefore consumed larger prey. We conclude that both intraspecific size variation and tree species composition shape the consumed prey of this generalist predator. 相似文献
5.
Combined effects of allelochemicals, prey availability, and supplemental plant material on growth of a generalist insect predator 总被引:2,自引:0,他引:2
We examined the effects of the presence of plant allelochemicals in prey diet, prey availability and supplemental plant material on the growth of the generalist predator Podisus maculiventris (Hemiptera: Pentatomidae). We tested two different nymphal stages of this predator. Third to fourth instar nymphs and fifth instar nymphs were fed a diet of prey (Manduca sexta larvae, Lepidoptera: Sphingidae) without allelochemicals in their diet or prey fed maximal levels of allelochemicals (tomatine, rutin and chlorogenic acid) found in their host plant (Lycopersicon esculentum). The nymphs were fed prey ad libitum, once every three days, or once every five days. They were given either no supplemental plant material or a 2 cm slice of green bean pod (Phaseolus vulgaris). We also conducted another experiment with fifth instar nymphs using the same conditions, except that mean levels of allelochemicals found in the host plant were fed to prey instead of maximal levels and the prey were provided either once a day or once every five days. For all experiments, prey scarcity depressed developmental rate, weight gain and relative growth rate. Overall, there was no negative effect of allelochemicals in the diet of the prey on these variables when predators were supplied with an excess of prey, but allelochemicals in the prey diet negatively affected these predators when prey were scarce. The addition of plant material to the diet of third to fourth instar nymphs did not have any effect on developmental rate, final dry weight, or relative growth rate. However, for fifth instar nymphs, the addition of plant material negatively affected these variables. Thus, the addition of plant material to the diet of the nymphs did not alleviate the negative effects of prey scarcity or allelochemicals in prey diet. 相似文献
6.
No evidence of nonlinear effects of predator density,refuge availability,or body size of prey on prey mortality rates 下载免费PDF全文
Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish (Gambusia affinis) as the prey, different numbers of green sunfish (Lepomis cyanellus) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator–prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level. 相似文献
7.
Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators 下载免费PDF全文
Analysis of predator–prey interactions is a core concept of animal ecology, explaining structure and dynamics of animal food webs. Measuring the functional response, i.e. the intake rate of a consumer as a function of prey density, is a powerful method to predict the strength of trophic links and assess motives of prey choice, particularly in arthropod communities. However, due to their reductionist set‐up, functional responses, which are based on laboratory feeding experiments, may not display field conditions, possibly leading to skewed results. Here, we tested the validity of functional responses of centipede predators and their prey by comparing them with empirical gut content data from field‐collected predators. Our predator–prey system included lithobiid and geophilomorph centipedes, abundant and widespread predators of forest soils and their soil‐dwelling prey. First, we calculated the body size‐dependent functional responses of centipedes using a published functional response model in which we included natural prey abundances and animal body masses. This allowed us to calculate relative proportions of specific prey taxa in the centipede diet. In a second step, we screened field‐collected centipedes for DNA of eight abundant soil‐living prey taxa and estimated their body size‐dependent proportion of feeding events. We subsequently compared empirical data for each of the eight prey taxa, on proportional feeding events with functional response‐derived data on prey proportions expected in the gut, showing that both approaches significantly correlate in five out of eight predator–prey links for lithobiid centipedes but only in one case for geophilomorph centipedes. Our findings suggest that purely allometric functional response models, which are based on predator–prey body size ratios are too simple to explain predator–prey interactions in a complex system such as soil. We therefore stress that specific prey traits, such as defence mechanisms, must be considered for accurate predictions. 相似文献
8.
Comparing three types of dietary samples for prey DNA decay in an insect generalist predator 下载免费PDF全文
Stefaniya Kamenova Rebecca Mayer Oskar R. Rubbmark Eric Coissac Manuel Plantegenest Michael Traugott 《Molecular ecology resources》2018,18(5):966-973
The rapidly growing field of molecular diet analysis is becoming increasingly popular among ecologists, especially when investigating methodologically challenging groups, such as invertebrate generalist predators. Prey DNA detection success is known to be affected by multiple factors; however, the type of dietary sample has rarely been considered. Here, we address this knowledge gap by comparing prey DNA detection success from three types of dietary samples. In a controlled feeding experiment, using the carabid beetle Pterostichus melanarius as a model predator, we collected regurgitates, faeces and whole consumers (including their gut contents) at different time points postfeeding. All dietary samples were analysed using multiplex PCR, targeting three different length DNA fragments (128, 332 and 612 bp). Our results show that both the type of dietary sample and the size of the DNA fragment contribute to a significant part of the variation found in the detectability of prey DNA. Specifically, we observed that in both regurgitates and whole consumers, prey DNA was detectable significantly longer for all fragment sizes than for faeces. Based on these observations, we conclude that prey DNA detected from regurgitates and whole consumers DNA extracts are comparable, whereas prey DNA detected from faeces, though still sufficiently reliable for ecological studies, will not be directly comparable to the former. Therefore, regurgitates and faeces constitute a useful, nonlethal source for dietary information that could be applied to field studies in situations when invertebrate predators should not be killed. 相似文献
9.
Madelyn R. Voelker Dietmar Schwarz Austen Thomas Benjamin W. Nelson Alejandro Acevedo‐Gutirrez 《Ecology and evolution》2020,10(18):9867-9885
Predator–prey interactions are critical in understanding how communities function. However, we need to describe intraspecific variation in diet to accurately depict those interactions. Harbor seals (Phoca vitulina) are an abundant marine predator that prey on species of conservation concern. We estimated intrapopulation feeding diversity (variation in feeding habits between individuals of the same species) of harbor seals in the Salish Sea. Estimates of feeding diversity were examined relative to sex, month, and location using a novel approach that combined molecular techniques, repeated cross‐sectional sampling of scat, and a specialization metric (within‐individual consistency in diet measured by the Proportional Similarity Index ()). Based on 1,083 scat samples collected from five haul‐out sites during four nonsequential years, we quantified diet using metabarcoding techniques and determined the sex of the scat depositor using a molecular assay. Results suggest that intrapopulation feeding diversity was present. Specialization was high over short periods (24–48 hr, = 0.392, 95% CI = 0.013, R = 100,000) and variable in time and space. Females showed more specialization than males, particularly during summer and fall. Additionally, demersal and benthic prey species were correlated with more specialized diets. The latter finding suggests that this type of prey likely requires specific foraging strategies and that there are trade‐offs between pelagic and benthic foraging styles for harbor seals. This differential feeding on prey species, as well as between sexes of harbor seals, indicates that predator–prey interactions in harbor seals are complex and that each sex may have a different impact on species of conservation concern. As such, describing intrapopulation feeding diversity may unravel hitherto unknown complex predator–prey interactions in the community. 相似文献
10.
Aim We compiled data on prey utilization of spiders at a global scale to better understand the relationship between current climate or net primary production (NPP) and diet breadth, evenness and composition in spiders. We test whether the productivity and the diversity–climatic‐stability (DCS) hypotheses focusing on diversity patterns may also explain global patterns in prey utilization by web‐building and cursorial spiders. Location A global dataset of 95 data points from semi‐natural and natural terrestrial habitats spanning 41.3° S to 56.1° N. Methods We collected data on spider prey (29 groups, mostly order‐level invertebrate taxa) through extensive literature research to identify the relationship between climatic conditions and NPP and spider diets based on 66 studies of prey composition in 82 spider species. Results The number of prey groups in spider diets was positively related to NPP, after accounting for differences in sampling effort in the original studies. In general, diet breadth was significantly higher for spider species in tropical environments. Prey individuals in spider diets were more evenly distributed among different prey groups in warmer environments with lower fluctuations in precipitation. Collembola and other spiders were more common prey for spiders with a cursorial hunting mode. Myriapoda and Collembola were more common prey in cooler climates with more stable precipitation, whereas Isoptera, Lepidoptera, Psocoptera and Coleoptera showed the opposite pattern. Main conclusions The positive relationship between diet breadth and NPP and the negative relationship between prey evenness and seasonality in precipitation support the productivity and the DCS hypotheses, respectively. This effect on global patterns of invertebrate predator–prey interactions suggests that trophic interactions between spiders and their prey are sensitive to climatic conditions. Climatic conditions may not only affect spider community composition, but also considerably alter the functional role of these abundant invertebrate predators in terrestrial ecosystems. 相似文献
11.
Small mammal abundances are frequently limited by resource availability, but predators can exert strong lethal (mortality) and nonlethal (e.g., nest abandonment) limitations. Artificially increasing resource availability for uncommon small mammals provides a unique opportunity to examine predator–prey interactions. We used remote cameras to monitor 168 nest platforms placed in the live tree canopy (n = 23 young forest stands), primarily for arboreal red tree voles (tree voles; Arborimus longicaudus), over 3 years (n = 15,510 monitoring‐weeks). Tree voles frequently built nests and were detected 37% of monitoring‐weeks, whereas flying squirrels (Glaucomys oregonensis) built nests infrequently but were detected 45% of monitoring‐weeks. Most nest predators were detected infrequently (<1% of monitoring‐weeks) and were positively correlated with tree vole presence. Weasels (Mustela spp.) were highly effective predators of tree voles (n = 8 mortalities; 10% of detections) compared to owls (n = 1), flying squirrels (n = 2), and Steller's jays (n = 1). Tree vole activity decreased from 84.1 (95% confidence interval [CI]: 56.2, 111.9) detections/week 1‐week prior to a weasel detection to 4.7 detections/week (95% CI: 1.7, 7.8) 1‐week postdetection and remained low for at least 12 weeks. Interpretations of predator–prey interactions were highly sensitive to how we binned continuously collected data and model results from our finest bin width were biologically counter‐intuitive. Average annual survival of female tree voles was consistent with a previous study (0.14; 95% CI: ?0.04 [0.01], 0.32) and high compared to many terrestrial voles. The relative infrequency of weasel detections and inefficiency of other predators did not provide strong support for the hypothesis that predation per se limited populations. Rather, predation pressure, by reducing occupancy of already scarce nest sites through mortality and nest abandonment, may contribute to long‐term local instability of tree vole populations in young forests. Additional monitoring would be needed to assess this hypothesis. 相似文献
12.
13.
14.
Intraguild predation (IGP) has been increasingly recognized as an important interaction in ecological systems over the past two decades, and remarkable insights have been gained into its nature and prevalence. We have developed a technique using molecular gut-content analysis to compare the rate of IGP between closely related species of coccinellid beetles (lady beetles or ladybirds), which had been previously known to prey upon one another. We first developed PCR primers for each of four lady beetle species: Harmonia axyridis, Coccinella septempunctata, Coleomegilla maculata and Propylea quatuordecimpunctata. We next determined the prey DNA detection success over time (DS(50) ) for each combination of interacting species following a meal. We found that DS(50) values varied greatly between predator-prey combinations, ranging from 5.2 to 19.3 h. As a result, general patterns of detection times based upon predator or prey species alone are not discernable. We used the DS(50) values to correct field data to demonstrate the importance of compensation for detection times that are specific to particular predator-prey combinations. 相似文献
15.
Novel predator–prey interactions can contribute to the invasion success of non‐native predators. For example, native prey can fail to recognize and avoid non‐native predators due to a lack of co‐evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non‐native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator–prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non‐native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non‐native lady beetles induce weaker avoidance behavior than cues of co‐evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non‐native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non‐native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non‐native H. axyridis. The non‐native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non‐native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non‐native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co‐evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non‐native predators. 相似文献
16.
Lubabalo Mofu Josie South Ryan J. Wasserman Tatenda Dalu Darragh J. Woodford Jaimie T. A. Dick Olaf L. F. Weyl 《Freshwater Biology》2019,64(9):1655-1663
- 相似文献
17.
Foraging theory predicts that individuals should choose a prey that maximizes energy rewards relative to the energy expended to access, capture, and consume the prey. However, the relative roles of differences in the nutritive value of foods and costs associated with differences in prey accessibility are not always clear. Coral‐feeding fishes are known to be highly selective feeders on particular coral genera or species and even different parts of individual coral colonies. The absence of strong correlations between the nutritional value of corals and prey preferences suggests other factors such as polyp accessibility may be important. Here, we investigated within‐colony feeding selectivity by the corallivorous filefish, Oxymonacanthus longirostris, and if prey accessibility determines foraging patterns. After confirming that this fish primarily feeds on coral polyps, we examined whether fish show a preference for different parts of a common branching coral, Acropora nobilis, both in the field and in the laboratory experiments with simulated corals. We then experimentally tested whether nonuniform patterns of feeding on preferred coral species reflect structural differences between polyps. We found that O. longirostris exhibits nonuniform patterns of foraging in the field, selectively feeding midway along branches. On simulated corals, fish replicated this pattern when food accessibility was equal along the branch. However, when food access varied, fish consistently modified their foraging behavior, preferring to feed where food was most accessible. When foraging patterns were compared with coral morphology, fish preferred larger polyps and less skeletal protection. Our results highlight that patterns of interspecific and intraspecific selectivity can reflect coral morphology, with fish preferring corals or parts of coral colonies with structural characteristics that increase prey accessibility. 相似文献
18.
Ryan P. Bourbour Breanna L. Martinico Megan M. Crane Angus C. Hull Joshua M. Hull 《Ecology and evolution》2019,9(3):1452-1457
Complex coevolutionary relationships among competitors, predators, and prey have shaped taxa diversity, life history strategies, and even the avian migratory patterns we see today. Consequently, accurate documentation of prey selection is often critical for understanding these ecological and evolutionary processes. Conventional diet study methods lack the ability to document the diet of inconspicuous or difficult‐to‐study predators, such as those with large home ranges and those that move vast distances over short amounts of time, leaving gaps in our knowledge of trophic interactions in many systems. Migratory raptors represent one such group of predators where detailed diet studies have been logistically challenging. To address knowledge gaps in the foraging ecology of migrant raptors and provide a broadly applicable tool for the study of enigmatic predators, we developed a minimally invasive method to collect dietary information by swabbing beaks and talons of raptors to collect trace prey DNA. Using previously published COI primers, we were able to isolate and reference gene sequences in an open‐access barcode database to identify prey to species. This method creates a novel avenue to use trace molecular evidence to study prey selection of migrating raptors and will ultimately lead to a better understanding of raptor migration ecology. In addition, this technique has broad applicability and can be used with any wildlife species where even trace amounts of prey debris remain on the exterior of the predator after feeding. 相似文献
19.
Mehdi Hassanpour Jafar Mohaghegh Shahzad Iranipour Gadir Nouri‐Ganbalani Annie Enkegaard 《Insect Science》2011,18(2):217-224
Abstract Understanding predator–prey interactions has a pivotal role in biological control programs. This study evaluated the functional response of three larval instars of the green lacewing, Chrysoperla carnea (Stephens), preying upon eggs and first instar larvae of the cotton bollworm, Helicoverpa armigera Hübner. The first and second instar larvae of C. carnea exhibited type II functional responses against both prey stages. However, the third instar larvae of C. carnea showed a type II functional response to the first instar larvae of H. armigera, but a type III functional response to the eggs. For the first instar larvae of C. carnea, the attack rate on H. armigera eggs was significantly higher than that on the larvae, whereas the attack rate of the second instar C. carnea on H. armigera larvae was significantly higher than that on the eggs. For the third instar larvae of C. carnea, the attack rate on the larvae was 1.015 ± 0.278/h, and the attack coefficient on the eggs was 0.036 ± 0.005. The handling times of the third instar larvae on larvae and eggs were 0.087 ± 0.009 and 0.071 ± 0.001 h, respectively. The highest predation rate was found for the third instar larvae of C. carnea on H. armigera eggs. Results of this study revealed that the larvae of C. carnea, especially the third instar, had a good predation potential in controlling H. armigera eggs and larvae. However, for a comprehensive estimation of the bio‐control abilities of C. carnea toward H. armigera, further field‐based studies are needed. 相似文献
20.
Prey‐mediated changes in the selectivity of the predator Macrolophus pygmaeus (Heteroptera: Miridae) 下载免费PDF全文
Dionyssia A. Maselou Dionyssios Ch. Perdikis Argyro A. Fantinou 《Entomological Science》2018,21(3):260-269
When foraging in communities with mixed prey, generalist predators may be confronted with prey species that differ in quality, size and mobility and interact with one another. To examine prey selection, predation by Macrolophus pygmaeus (Heteroptera: Miridae) was recorded by providing a diet of either one or two prey species of Myzus persicae (third‐instar nymphs), Aphis gossypii (fourth‐instar nymphs), Trialeurodes vaporariorum (third‐instar nymphs) and Ephestia kuehniella (eggs). In the experiments, prey mobility, prey quality and prey biomass were considered. The biomass consumed by the predator was dependent on the combination of prey species and the quantity of biomass offered. In choice experiments with diets mixed of two prey species at equal densities, the predation to A. gossypii was significantly reduced in the presence of E. kuehniella but the rate of consumption of M. persicae, T. vaporariorum and E.kuehniella was not significantly affected by the coexistence of any other species in the mixed prey diet. When equal amounts of biomass from two prey species were provided in combination, the total consumed biomass was significantly reduced in the mixed prey diets composed of E. kuehniella eggs and aphid nymphs. Thus, under the mixed‐prey situation, prey selection by predators may be affected by interactions among prey species differing in traits such as quality, mobility and size. 相似文献