首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Sex‐allocation theory predicts that females in good condition should preferentially produce offspring of the sex that benefits the most from an increase in maternal investment. However, it is generally assumed that the condition of the sire has little effect on progeny sex ratio, particularly in species that lack parental care. We used a controlled breeding experiment and molecular paternity analyses to examine the effects of both maternal and paternal condition on progeny sex ratio and progeny fitness in the brown anole (Anolis sagrei), a polygynous lizard that lacks parental care. Contrary to the predictions of sex‐allocation theory, we found no relationship between maternal condition and progeny sex ratio. By contrast, progeny sex ratio shifted dramatically from female‐biased to male‐biased as paternal condition increased. This pattern was driven entirely by an increase in the production of sons as paternal condition improved. Despite strong natural selection favoring large size and high condition in both sons and daughters, we found no evidence that progeny survival was related to paternal condition. Our results emphasize the importance of considering the paternal phenotype in studies of sex allocation and highlight the need for further research into the pathways that link paternal condition to progeny fitness.  相似文献   

2.
Parents should bias sex allocation toward offspring of the sex most likely to provide higher fitness returns. Trivers and Willard proposed that for polygynous mammals, females should adjust sex‐ratio at conception or bias allocation of resources toward the most profitable sex, according to their own body condition. However, the possibility that mammalian fathers may influence sex allocation has seldom been considered. Here, we show that the probability of having a son increased from 0.31 to 0.60 with sire reproductive success in wild bighorn sheep (Ovis canadensis). Furthermore, our results suggest that females fertilized by relatively unsuccessful sires allocated more energy during lactation to daughters than to sons, while the opposite occurred for females fertilized by successful sires. The pattern of sex‐biased offspring production appears adaptive because paternal reproductive success reduced the fitness of daughters and increased the average annual weaning success of sons, independently of maternal allocation to the offspring. Our results illustrate that sex allocation can be driven by paternal phenotype, with profound influences on the strength of sexual selection and on conflicts of interest between parents.  相似文献   

3.
Parents should differentially invest in sons or daughters depending on the sex‐specific fitness returns from male and female offspring. In species with sexually selected heritable male characters, highly ornamented fathers should overproduce sons, which will be more sexually attractive than sons of less ornamented fathers. Because of genetic correlations between the sexes, females that express traits which are under selection in males should also overproduce sons. However, sex allocation strategies may consist in reaction norms leading to spatiotemporal variation in the association between offspring sex ratio (SR) and parental phenotype. We analysed offspring SR in barn swallows (Hirundo rustica) over 8 years in relation to two sexually dimorphic traits: tail length and melanin‐based ventral plumage coloration. The proportion of sons increased with maternal plumage darkness and paternal tail length, consistently with sexual dimorphism in these traits. The size of the effect of these parental traits on SR was large compared to other studies of offspring SR in birds. Barn swallows thus manipulate offspring SR to overproduce ‘sexy sons’ and potentially to mitigate the costs of intralocus sexually antagonistic selection. Interannual variation in the relationships between offspring SR and parental traits was observed which may suggest phenotypic plasticity in sex allocation and provides a proximate explanation for inconsistent results of studies of sex allocation in relation to sexual ornamentation in birds.  相似文献   

4.
How mothers allocate resources to offspring is central to understanding life history strategies. High quality mothers are predicted to favour investment in sons over daughters when to do so increases inclusive fitness. This is the case in ungulates with polygynous mating systems, where reproductive success is more variable among males than females, but information is scarce on sex allocation in less polygynous species. Here, for the weakly dimorphic roe deer, we show that as maternal capacity to invest increases, mothers increase allocation to daughters more than to sons, so that relative allocation to daughters increases markedly with increasing maternal quality. This cannot be explained by a between sex difference in growth priority, hence we conclude that this is evidence for active maternal discrimination. Further, we demonstrate that condition differences between offspring persist to adulthood. For high quality mothers of weakly polygynous species, daughters may be more valuable than sons.  相似文献   

5.
Mothers influence their offspring phenotype by varying egg quality. Such maternal effects may be mediated by transmission of antibodies and antioxidants. Mothers should adjust allocation of maternal substances depending on embryonic sex because of differences in reproductive value, potentially dependent on paternal genetic effects as reflected by secondary sexual characters. We manipulated sexual attractiveness of male barn swallows (Hirundo rustica) and investigated maternal investment in eggs in relation to offspring sex. Mothers allocated more antibodies against a pathogen to eggs with a daughter than a son. However, concentration of antioxidants was independent of embryonic sex. Sex-dependent allocation was independent of paternal attractiveness. Thus, mothers adjusted allocation of substances to offspring in a complex manner, that may be part of a strategy of favouritism of daughters, which have larger mortality than sons. Such effects may have important consequences for secondary and tertiary sex ratios, but also for ontogeny of adult phenotype.  相似文献   

6.
Sex allocation theory predicts that parents are selected to bias their progeny sex ratio (SR) toward the sex that will benefit the most from parental quality. Because parental quality may differentially affect survival of sons and daughters, a pivotal test of the adaptive value of SR adjustment is whether parents overproduce offspring of the sex that accrues larger fitness advantages from high parental quality. However, this crucial test of the long‐term fitness consequences of sex allocation decisions has seldom been performed. In this study of the barn swallow (Hirundo rustica), we showed a positive correlation between the proportion of sons and maternal annual survival. We then experimentally demonstrated that this association did not depend on the differential costs of rearing offspring of either sex. Finally, we showed that maternal lifespan positively predicted lifespan of sons but not of daughters. Because in barn swallows lifespan is a strong determinant of lifetime reproductive success, the results suggest that mothers overproduce offspring of the sex that benefits the most from maternal quality. Hence, irrespective of mechanisms causing the SR bias and mother–son covariation in lifespan, we provide strong evidence that sex allocation decisions of mothers can highly impact on their lifetime fitness.  相似文献   

7.
Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.  相似文献   

8.
Sex allocation theory predicts that parents should adjust investment in sons and daughters according to relative fitness of differently sexed offspring. In species with female preference for highly ornamented males, one advantage potentially accruing to parents from investing more in sons of the most ornamented males is that male offspring will inherit characters ensuring sexual attractiveness or high-quality genes, if ornaments honestly reveal male genetic quality. Furthermore, in species where extra-pair fertilizations occur, offspring sired by an extra-pair male are expected to more frequently be male than those of the legitimate male if the latter is of lower quality than the extra-pair male. We investigated adjustment of sex ratio of offspring in relation to ornamentation of the extra-pair and the social mate of females by direct manipulation of tails of male barn swallows Hirundo rustica . Molecular sexing of the offspring was performed using the W chromosome-linked avian chromo-helicase-DNA-binding protein (CHD) gene while paternity assessment was conducted by typing of hypervariable microsatellite loci. Extra-pair offspring sex ratio was not affected by ornamentation of their biological fathers relative to the experimental ornamentation of the parental male. Experimental ornamentation of the parental males did not affect the sex ratio of nestlings in their broods. Female barn swallows might be unable to bias offspring sex ratio at hatching according to the quality of the biological father. Alternatively, fitness benefits in terms of sexual attractiveness of sons might be balanced by the cost of compensating for little parental care provided by highly ornamented parental males, if sons are more costly to rear than daughters, or the advantage of producing more daughters, if males with large ornaments contribute differentially more to the viability of daughters than sons.  相似文献   

9.
Adaptive sex allocation has frequently been studied in sexually size dimorphic species, but far less is known about patterns of sex allocation in species without pronounced sexual size dimorphism. Parental optimal investment can be predicted under circumstances in which sons and daughters differ in costs and/or fitness returns. In common terns Sterna hirundo, previous studies suggest that sons are the more costly sex to produce and rear. We investigated whether hatching and fledging sex ratio and sex‐specific chick mortality correlated with the ecological environment (laying date, clutch size, hatching order and year quality) and parental traits (condition, arrival date, experience and breeding success), over seven consecutive years. Population‐wide sex ratios and sex‐specific mortality did not differ from parity, but clutch size, mass of the father, maternal breeding experience and to some extent year quality correlated with hatching sex ratio. The proportion of sons tended to increase in productive years and when the father was heavier, suggesting the possibility that females invest more in sons when the environmental and the partner conditions are good. The proportion of daughters increased with clutch size and maternal breeding experience, suggesting a decline in breeding performance or a resources balance solved by producing more of the cheaper sex. No clear patterns of sex‐specific mortality were found, neither global nor related to parental traits. Our results suggest lines for future studies on adaptive sex allocation in sexually nearly monomorphic species, where adjustment of sex ratio related to parental factors and differential allocation between the offspring may also occur.  相似文献   

10.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   

11.
The expression of behavior, including parental care behavior, is influenced by complex interactions of the genes of an organism and the prevailing environmental conditions. Previously, we showed that the development of paternal, but not maternal, care in the African striped mouse, Rhabdomys pumilio, has a significant nongenetic maternal component. Here, we investigate the genetic component of parental care behavior from parents to offspring. We first measured the duration of parental care behavior of mothers and fathers every second day for 11 days postnatally. Subsequently, one son and one daughter from each of these litters were paired with unrelated mates when they were adults and their parental care behavior scored. Using regression models, we then compared parental care behavior of parents and their adult offspring. The transmission of parental care behavior from striped mouse fathers to sons and from mothers to both sons and daughters did not indicate a genetic component. Instead, we found a patrilineal genetic component for parental care in daughters. The reason for this unusual pattern of inheritance is not known, but this finding complements that of our other studies, showing that the expression of maternal care behavior in adult daughters is also not nongenetically influenced by their mothers. We suggest that, although females are constrained to provide maternal care in different social contexts, maternal care behavior may be influenced genetically by the father.  相似文献   

12.
Theory predicts that mothers should adjust offspring sex ratios when the expected fitness gains or rearing costs differ between sons and daughters. Recent empirical work has linked biased offspring sex ratios to environmental quality via changes in relative maternal condition. It is unclear, however, whether females can manipulate offspring sex ratios in response to environmental quality alone (i.e. independent of maternal condition). We used a balanced within-female experimental design (i.e. females bred on both low- and high-quality diets) to show that female parrot finches (Erythrura trichroa) manipulate primary offspring sex ratios to the quality of the rearing environment, and not to their own body condition and health. Individual females produced an unbiased sex ratio on high-quality diets, but over-produced sons in poor dietary conditions, even though they maintained similar condition between diet treatments. Despite the lack of sexual size dimorphism, such sex ratio adjustment is in line with predictions from sex allocation theory because nutritionally stressed foster sons were healthier, grew faster and were more likely to survive than daughters. These findings suggest that mothers may adaptively adjust offspring sex ratios to optimally match their offspring to the expected quality of the rearing environment.  相似文献   

13.
Modification of offspring sex ratios in response to parental quality is predicted when the long-term fitness returns of sons and daughters differ. One factor that may influence a mother's sex allocation decision is the quality (or attractiveness) of her mate. We investigated whether the sex ratios of offspring produced by female Drosophila melanogaster are biased with respect to the age of the males to which they are mated, and whether there is an adaptive basis for this phenomenon. We found that females mated to old males (13 d post-eclosion) initially produced a greater proportion of daughters than did females mated to young males (1 d post-eclosion). This pattern does not appear to be due to a systematic difference in the numbers or mortality of the X- and Y-bearing sperm originating from old and young fathers, as the overall sex ratios of all offspring produced from a single copulation did not differ between broods fathered by the two types of males. The sons of older males fared worse in competitive mating assays than did the sons of younger males, while daughters of old and young males were of comparable fitness. These results suggest that there is an adaptive basis for the observed sex ratio modification.  相似文献   

14.
The control of primary sex-ratio by vertebrates has become a major focus in biology in recent years. Evolutionary theory predicts that a differential effect of maternal characteristics on the fitness of sons and daughters is an important route, whereby selection is expected to favour a bias towards the production of one sex. However, despite experimental evidence for adaptive brood sex-ratio manipulation, support for this prediction remains a major challenge in vertebrates where inconsistencies between correlative studies are frequently reported. Here, we used a large dataset (2215 nestlings over 3 years) from a wild population of tree swallows (Tachycineta bicolor) and show that variations in breeding conditions affect female sex allocation in this species. Our results also suggest that such variation in sex allocation, owing to breeding season heterogeneity, modifies the relationships between maternal characteristics and maternal investment. Indeed, we detect a positive effect of maternal age on brood sex-ratio when age also affects offspring condition (in a low-quality breeding season). Our results indicate that including measures of both breeding season quality and maternal investment will help to better understand sex allocation patterns.  相似文献   

15.
Wild G  West SA 《The American naturalist》2007,170(5):E112-E128
Tests of sex allocation theory in vertebrates are usually based on verbal arguments. However, the operation of multiple selective forces can complicate verbal arguments, possibly making them misleading. We construct an inclusive fitness model for the evolution of condition-dependent brood sex ratio adjustment in response to two leading explanations for sex ratio evolution in vertebrates: the effect of maternal quality on the fitness of male and female offspring (the Trivers-Willard hypothesis [TWH]) and local resource competition (LRC) between females. We show (1) the population sex ratio can be either unbiased or biased in either direction (toward either males or females); (2) brood sex ratio adjustment can be biased in either direction, with high-quality females biasing reproductive investment toward production of sons (as predicted by the TWH) or production of daughters (opposite to predictions of the TWH); and (3) selection can favor gradual sex ratio adjustment, with both sons and daughters being produced by both high- and low-quality mothers. Despite these complications, clear a priori predictions can be made for how the population sex ratio and the conditional sex ratio adjustment of broods should vary across populations or species, and within populations, across individuals of different quality.  相似文献   

16.
When environmental conditions exert sex-specific selection on offspring, mothers should benefit from biasing their sex allocation towards the sex with the highest fitness in a given environment. Yet, studies show mixed support for such adaptive strategies in vertebrates, which may be due to mechanistic constraints and/or weak selection on facultative sex allocation. In an attempt to disentangle these alternatives, we quantified sex-specific fitness returns and sex allocation (sex ratio and sex-specific mass at birth) according to maternal factors (body size, age, birth date, and litter size), habitat, and year in a viviparous snake with genotypic sex determination. We used data on 106 litters from 19 years of field survey in two nearby habitats occupied by the meadow viper Vipera ursinii ursinii in south-eastern France. Maternal reproductive investment and habitat quality had no differential effects on the growth and survival of sons and daughters. Sex ratio at birth was balanced despite a slight female-biased mortality before birth. No sexual mass dimorphism between offspring was evident. Sex allocation was almost random apart for a trend towards more male-biased litters as females grew older, which could be explained by an inbreeding avoidance strategy. Thus, a weak selection for facultative sex allocation seems sufficient to explain the almost equal sex allocation in the meadow viper.  相似文献   

17.
Sex allocation theory predicts that females should adjust the sex of their offspring when the fitness returns of one sex are higher than the other. However, biased sex ratios may also arise if mortality differs between the sexes. Here, we examine whether offspring sex ratio bias in the dung beetle, Onthophagus taurus, represents adaptive sex allocation by females or is due to sex-specific mortality. First, we re-analyze an existing data set to show that females produce an excess of daughters when mating to smaller, less attractive males and near equal sex ratio with large, more attractive males. We show, that this results from females adjusting larval provisions after mating to males of variable attractiveness which in turn influences the likelihood that sons die during development. Second, we conduct a manipulative experiment varying the quantity and quality of larval provisions and show that the mortality of sons increased when larval provisions were reduced. Collectively, our work demonstrates that offspring mortality is contingent on the amount of resources provisioned by females and that sons have greater nutritional demands than daughters during development, leading to higher mortality. Our results therefore demonstrate the importance of considering sex-specific offspring mortality in studies of sex ratio evolution.  相似文献   

18.
Alloparents contribute to offspring care and alleviate the workload of breeders. The help provided varies with the age and/or experience of helpers, but it is not known whether breeders vary their investment based on the age of helpers by adjusting the parental care they provide. We studied the alloparental care provided by juvenile and subadult philopatric daughters in biparental African striped mice Rhabdomys pumilio with and without the mother as a measure of alleviation of maternal workload. We showed in a previous study that alleviation of maternal workload directly affects the development of paternal care in their sons, so we studied the expression of paternal care in young males raised by helpers as a proxy of the long‐term consequences of helping. Both juvenile and subadult daughters provided care but the level of alloparental care and concomitant alleviation of maternal care was age‐dependent. In the absence of the mother, juvenile daughters provided just 6% of care compared with 24% of subadult daughters. Sons raised by mothers and juvenile helpers displayed the expected exaggerated levels of care also observed when mothers raise litters on their own. While our results show the direct value of subadult daughters, juvenile daughters could contribute indirectly (e.g. nest maintenance) to alleviating maternal workload. The development of paternal care indicates that mothers do distinguish between the care provided by different aged helpers. Overall, the type of alloparental care provided by female striped mice is expected to change over their lifetimes, resulting in increased inclusive fitness through caring for siblings and acquisition of parenting skills.  相似文献   

19.
Despite decades of research, whether vertebrates can and do adaptively adjust the sex ratio of their offspring is still highly debated. However, this may have resulted from the failure of empirical tests to identify large and predictable fitness returns to females from strategic adjustment. Here, we test the effect of diet quality and maternal condition on facultative sex ratio adjustment in the color polymorphic Gouldian finch (Erythrura gouldiae), a species that exhibits extreme maternal allocation in response to severe and predictable (genetically-determined) fitness costs. On high-quality diets, females produced a relatively equal sex ratio, but over-produced sons in poor dietary conditions. Despite the lack of sexual size dimorphism, nutritionally stressed foster sons were healthier, grew faster, and were more likely to survive than daughters. Although these findings are in line with predictions from sex allocation theory, the extent of adjustment is considerably lower than previously reported for this species. Females therefore have strong facultative control over sex allocation, but the extent of adjustment is likely determined by the relative magnitude of fitness gains and the ability to reliably predict sex-specific benefits from environmental (vs. genetic) variables. These findings may help explain the often inconsistent, weak, or inconclusive empirical evidence for adaptive sex ratio adjustment in vertebrates.  相似文献   

20.
Sex allocation in black-capped chickadees Poecile atricapilla   总被引:2,自引:0,他引:2  
Optimal sex allocation for individuals can be predicted from a number of different hypotheses. Fisherian models of sex allocation predict equal investment in males and females up to the end of parental care and predict brood compositions based on the relative costs of producing males and females. The Trivers-Willard hypothesis predicts that individual females should alter the sex ratio of their broods based on their own condition if it has a differential impact on the lifetime reproductive success of their sons and daughters. The Charnov model of sex allocation predicts that females should alter sex allocation based on paternal attributes that may differentially benefit sons versus daughters. Because females are the heterogametic sex in birds, many recent studies have focussed on primary sex ratio biases. In black-capped chickadees Poecile atricapilla , males are larger than females suggesting they may be more costly to raise than females. Female condition affects competitive ability in contests for mates, and thus may be related to variance in fecundity. Females prefer high-ranking males as both social and extrapair partners. These observations suggest that females might vary the sex ratio of their broods based on the predictions of any of the above models. Here, we report on the results of PCR based sex determination of 1093 nestlings in 175 broods sampled from 1992 to 2001. Population-wide, we found a mean brood sex ratio of 0.525±0.016, with no significant deviation from a predicted binomial distribution. We found no effect of clutch size, female condition, hatch date, parental rank or paternity. Our results reject the idea that female black-capped chickadees systematically vary sex allocation in their broods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号