首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Czechoslovakian Wolfdog is a unique dog breed that originated from hybridization between German Shepherds and wild Carpathian wolves in the 1950s as a military experiment. This breed was used for guarding the Czechoslovakian borders during the cold war and is currently kept by civilian breeders all round the world. The aim of our study was to characterize, for the first time, the genetic composition of this breed in relation to its known source populations. We sequenced the hypervariable part of the mtDNA control region and genotyped the Amelogenin gene, four sex-linked microsatellites and 39 autosomal microsatellites in 79 Czechoslovakian Wolfdogs, 20 German Shepherds and 28 Carpathian wolves. We performed a range of population genetic analyses based on both empirical and simulated data. Only two mtDNA and two Y-linked haplotypes were found in Czechoslovakian Wolfdogs. Both mtDNA haplotypes were of domestic origin, while only one of the Y-haplotypes was shared with German Shepherds and the other was unique to Czechoslovakian Wolfdogs. The observed inbreeding coefficient was low despite the small effective population size of the breed, possibly due to heterozygote advantages determined by introgression of wolf alleles. Moreover, Czechoslovakian Wolfdog genotypes were distinct from both parental populations, indicating the role of founder effect, drift and/or genetic hitchhiking. The results revealed the peculiar genetic composition of the Czechoslovakian Wolfdog, showing a limited introgression of wolf alleles within a higher proportion of the dog genome, consistent with the reiterated backcrossing used in the pedigree. Artificial selection aiming to keep wolf-like phenotypes but dog-like behavior resulted in a distinctive genetic composition of Czechoslovakian Wolfdogs, which provides a unique example to study the interactions between dog and wolf genomes.  相似文献   

2.
Occasional crossbreeding between free-ranging domestic dogs and wild wolves (Canis lupus) has been detected in some European countries by mitochondrial DNA sequencing and genotyping unlinked microsatellite loci. Maternal and unlinked genomic markers, however, might underestimate the extent of introgressive hybridization, and their impacts on the preservation of wild wolf gene pools. In this study, we genotyped 220 presumed Italian wolves, 85 dogs and 7 known hybrids at 16 microsatellites belonging to four different linkage groups (plus four unlinked microsatellites). Population clustering and individual assignments were performed using a Bayesian procedure implemented in structure 2.1, which models the gametic disequilibrium arising between linked loci during admixtures, aiming to trace hybridization events further back in time and infer the population of origin of chromosomal blocks. Results indicate that (i) linkage disequilibrium was higher in wolves than in dogs; (ii) 11 out of 220 wolves (5.0%) were likely admixed, a proportion that is significantly higher than one admixed genotype in 107 wolves found previously in a study using unlinked markers; (iii) posterior maximum-likelihood estimates of the recombination parameter r revealed that introgression in Italian wolves is not recent, but could have continued for the last 70 (+/- 20) generations, corresponding to approximately 140-210 years. Bayesian clustering showed that, despite some admixture, wolf and dog gene pools remain sharply distinct (the average proportions of membership to wolf and dog clusters were Q(w) = 0.95 and Q(d) = 0.98, respectively), suggesting that hybridization was not frequent, and that introgression in nature is counteracted by behavioural or selective constraints.  相似文献   

3.
Hybridization between wild and domestic species is of conservation concern because it can result in the loss of adaptations and/or disappearance of a distinct taxon. Wolves from Vancouver Island, British Columbia (Canada), have been subject to several eradication campaigns during the twentieth century and were considered virtually extirpated between 1950 and 1970. In this study, we use control region mitochondrial DNA sequences and 13 autosomal microsatellite loci to characterize Vancouver Island wolves as well as dogs from British Columbia. We observe a turnover in the haplotypes of wolves sampled before and after the 1950–1970 period, when there was no permanent wolf population on the island, supporting the probable local extinction of wolves on Vancouver Island during this time, followed by re-colonization of the island by wolves from mainland British Columbia. In addition, we report the presence of a domestic dog mtDNA haplotype in three individuals eliminated in 1986 that were morphologically identified as wolves. Here we show that Vancouver Island wolves were also identified as wolves based on autosomal microsatellite data. We attribute the hybridization event to the episodically small size of this population during the re-colonization event. Our results demonstrate that at least one female hybrid offspring, resulting from a cross of a male wolf and a female dog or a female hybrid pet with dog mtDNA, successfully introgressed into the wolf population. No dog mtDNA has been previously reported in a population of wild wolves. Genetic data show that Vancouver Island wolves are distinct from dogs and thus should be recognized as a population of wild wolves. We suggest that the introgression took place due to the Allee effect, specifically a lack of mates when population size was low. Our findings exemplify how small populations are at risk of hybridization.  相似文献   

4.
Mitochondrial-DNA (mtDNA) restriction patterns were studied in 22 wolves (Canis lupus) sampled in central-northern Italy. A total of 60 restriction sites were detected, encompassing about 2 % of the mitochondrial genome of canids. All wolves showed the same restriction pattern. Therefore, a single mtDNA haplotype was detected in the Italian wolf population. Historical information on peninsular isolation and demographic decline suggest that low genetically effective population size and random drift may have strongly reduced the mtDNA variability of wolves in Italy over the last 100–200 years. A different mtDNA restriction pattern in feral dogs sampled from a wolf range in central Italy was detected. These findings suggest that the hybridization and introgression of female dog genomes into the Italian wolf population may be rare or absent.  相似文献   

5.
Southern European wolves suffered from reiterated population declines during glacial periods and historically due to human persecution. Differently from other European wolf populations, a single mitochondrial DNA (mtDNA) control region haplotype (W14) has been so far described in the Italian wolves, although no intensive genetic sampling has ever been conducted in historical source populations from central and southern Italy. Using non-invasive genetic techniques, we report the occurrence of an unexpected mtDNA haplotype (W16) in the wolf population of the Abruzzo, Lazio and Molise National Park (PNALM), central Italy. This haplotype, detected in three out of 90 faecal samples from the PNALM, was previously reported in wolves from the North Carpathians, Slovakia and the Balkans only. Microsatellite analysis and molecular sex determination confirmed that the W16 samples belonged to three distinct wolves. Although alternative explanations can be formulated for the origin of this mtDNA haplotype in the otherwise monomorphic Italian wolf population, assignment procedures indicated the likely admixed ancestry of one W16 sample with East European wolves. Anthropogenic introgression with dogs has been detected in the Italian wolf population using nuclear DNA microsatellites, but no population-wide genetic survey had previously reported a mtDNA control region variant in Italian wolves. Our findings strongly suggest that, in addition to wolf × dog hybridization, captive-released wolves or wolf × dog hybrids may successfully interbreed with wolves in the wild, and that human-mediated introgression may occur even in well established protected areas.  相似文献   

6.
Hybridization between wild species and their domestic counterparts may represent a major threat to natural populations. However, high genetic similarity between the hybridizing taxa makes the detection of hybrids a difficult task and may hinder attempts to assess the impact of hybridization in conservation biology. In this work, we used a combination of 42 autosomal microsatellites together with Y-chromosome microsatellite-defined haplotypes and mtDNA sequences to investigate the occurrence and dynamics of wolf-dog hybridization in the Iberian Peninsula. To do this, we applied a variety of Bayesian analyses and a parallel set of simulation studies to evaluate (i) the differences between Iberian wolves and dogs, (ii) the frequency and geographical distribution of hybridization and (iii) the directionality of hybridization. First, we show that Iberian wolves and dogs form two well-differentiated genetic entities, suggesting that introgressive hybridization is not a widespread phenomenon shaping both gene pools. Second, we found evidence for the existence of hybridization that is apparently restricted to more peripheral and recently expanded wolf populations. Third, we describe compelling evidence suggesting that the dynamics of hybridization in wolf populations is mediated by crosses between male dogs and female wolves. More importantly, the observation of a population showing the occurrence of a continuum of hybrid classes forming mixed packs may indicate that we have underestimated hybridization. If future studies confirm this pattern, then an intriguing avenue of research is to investigate how introgression from free-ranging domestic dogs is enabling wolf populations to adapt to the highly humanized habitats of southern Europe while still maintaining their genetic differentiation.  相似文献   

7.
8.
One major concern in wolf (Canis lupus) conservation is the risk of genetic contamination due to crossbreeding with domestic dogs. Although genetic monitoring of wolf populations has become widely used, the behavioural mechanisms involved in wolf-dog hybridization and the detrimental effects of genetic introgression are poorly known. In this study we analysed Y-chromosome microsatellite variation in the recovering Italian wolf population and detected strikingly different allele frequencies between wolves and dogs. Four Y haplotypes were found in 74 analysed male wolves, and all of them were present in a focus wolf population in the Apennines. On the other hand, only 1 haplotype was found in the recolonizing wolf population from the Western Alps. The most common haplotype in a sample of domestic dogs, was also found in 5 wolves, 2 of which revealing a signature of recent hybridization. Moreover, another suspect hybrid carried a private haplotype of possible canine origin. These results give support to the idea that female wolves can breed with male stray dogs in the wild. The Y-chromosome variation in Italian wolves contrasts with the previously observed lack of mitochondrial variation. Further investigations are needed to clarify at what extent historical or recent wolf-dog hybridization events may have contributed to the observed haplotype diversity. In conclusion, the two molecular markers employed in this study represent effective means to trace directional genetic introgression into the wolves male lineage and have the noteworthy advantage of being suitable for analyses on low-quality DNA samples.  相似文献   

9.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

10.
Studies on hybridization have proved critical for understanding key evolutionary processes such as speciation and adaptation. However, from the perspective of conservation, hybridization poses a concern, as it can threaten the integrity and fitness of many wild species, including canids. As a result of habitat fragmentation and extensive hunting pressure, gray wolf (Canis lupus) populations have declined dramatically in Europe and elsewhere during recent centuries. Small and fragmented populations have persisted, but often only in the presence of large numbers of dogs, which increase the potential for hybridization and introgression to deleteriously affect wolf populations. Here, we demonstrate hybridization between wolf and dog populations in Estonia and Latvia, and the role of both genders in the hybridization process, using combined analysis of maternal, paternal and biparental genetic markers. Eight animals exhibiting unusual external characteristics for wolves - six from Estonia and two from Latvia - proved to be wolf-dog hybrids. However, one of the hybridization events was extraordinary. Previous field observations and genetic studies have indicated that mating between wolves and dogs is sexually asymmetrical, occurring predominantly between female wolves and male dogs. While this was also the case among the Estonian hybrids, our data revealed the existence of dog mitochondrial genomes in the Latvian hybrids and, together with Y chromosome and autosomal microsatellite data, thus provided the first evidence from Europe of mating between male wolves and female dogs. We discuss patterns of sexual asymmetry in wolf-dog hybridization.  相似文献   

11.
Bohling JH  Waits LP 《Molecular ecology》2011,20(10):2142-2156
Predicting spatial patterns of hybridization is important for evolutionary and conservation biology yet are hampered by poor understanding of how hybridizing species can interact. This is especially pertinent in contact zones where hybridizing populations are sympatric. In this study, we examined the extent of red wolf (Canis rufus) colonization and introgression where the species contacts a coyote (C. latrans) population in North Carolina, USA. We surveyed 22,000km(2) in the winter of 2008 for scat and identified individual canids through genetic analysis. Of 614 collected scats, 250 were assigned to canids by mitochondrial DNA (mtDNA) sequencing. Canid samples were genotyped at 6-17 microsatellite loci (nDNA) and assigned to species using three admixture criteria implemented in two Bayesian clustering programs. We genotyped 82 individuals but none were identified as red wolves. Two individuals had red wolf mtDNA but no significant red wolf nDNA ancestry. One individual possessed significant red wolf nDNA ancestry (approximately 30%) using all criteria, although seven other individuals showed evidence of red wolf ancestry (11-21%) using the relaxed criterion. Overall, seven individuals were classified as hybrids using the conservative criteria and 37 using the relaxed criterion. We found evidence of dog (C. familiaris) and gray wolf (C. lupus) introgression into the coyote population. We compared the performance of different methods and criteria by analyzing known red wolves and hybrids. These results suggest that red wolf colonization and introgression in North Carolina is minimal and provide insights into the utility of Bayesian clustering methods to detect hybridization.  相似文献   

12.
Genomic resources developed for domesticated species provide powerful tools for studying the evolutionary history of their wild relatives. Here we use 61K single-nucleotide polymorphisms (SNPs) evenly spaced throughout the canine nuclear genome to analyse evolutionary relationships among the three largest European populations of grey wolves in comparison with other populations worldwide, and investigate genome-wide effects of demographic bottlenecks and signatures of selection. European wolves have a discontinuous range, with large and connected populations in Eastern Europe and relatively smaller, isolated populations in Italy and the Iberian Peninsula. Our results suggest a continuous decline in wolf numbers in Europe since the Late Pleistocene, and long-term isolation and bottlenecks in the Italian and Iberian populations following their divergence from the Eastern European population. The Italian and Iberian populations have low genetic variability and high linkage disequilibrium, but relatively few autozygous segments across the genome. This last characteristic clearly distinguishes them from populations that underwent recent drastic demographic declines or founder events, and implies long-term bottlenecks in these two populations. Although genetic drift due to spatial isolation and bottlenecks seems to be a major evolutionary force diversifying the European populations, we detected 35 loci that are putatively under diversifying selection. Two of these loci flank the canine platelet-derived growth factor gene, which affects bone growth and may influence differences in body size between wolf populations. This study demonstrates the power of population genomics for identifying genetic signals of demographic bottlenecks and detecting signatures of directional selection in bottlenecked populations, despite their low background variability.  相似文献   

13.
The conservation of endangered species requires accurate data, and knowledge of cause-specific mortality rates is one of the most important issues. In recent years, conservation programs for the critically endangered Iberian lynx Lynx pardinus have been developed on the basis of mortality data derived 30 years ago from the small Doñana population. Thus, there is an urgent need for an update of mortality rates and causes in both populations (Sierra Morena and Doñana). Here we use radio-tracking information from the whole range of the Iberian lynx to quantify mortality rates and identify their causes. Between 2006 and 2011, we radio-tagged 78 Iberian lynxes from its two remaining populations (39 from Sierra Morena and 39 from Doñana). Mortality events were evaluated to identify causes, and cause-specific annual mortality rates (AMR) were obtained using the nonparametric cumulative incidence function estimator. Overall, AMR was estimated at 0.16?±?0.05 (0.19?±?0.09 in Sierra Morena and 0.12?±?0.07 in Doñana). Disease was the main cause of mortality both for the whole population and the Doñana population. Poaching was the main cause of mortality in Sierra Morena. Our results suggest that the best strategy for conserving this species is to focus action on decreasing the fatal effect of disease and poaching. Given the possible existence of an underlying inbreeding-mediated immunosuppression, genetic management aimed at increasing the genetic diversity of this population is also recommended.  相似文献   

14.
Introgressive hybridization between domestic dogs and wolves (Canis lupus) represents an emblematic case of anthropogenic hybridization and is increasingly threatening the genomic integrity of wolf populations expanding into human-modified landscapes. But studies formally estimating prevalence and accounting for imperfect detectability and uncertainty in hybrid classification are lacking. Our goal was to present an approach to formally estimate the proportion of admixture by using a capture-recapture (CR) framework applied to individual multilocus genotypes detected from non-invasive samples collected from a protected wolf population in Italy. We scored individual multilocus genotypes using a panel of 12 microsatellites and assigned genotypes to reference wolf and dog populations through Bayesian clustering procedures. Based on 152 samples, our dataset comprised the capture histories of 39 individuals sampled in 7 wolf packs and was organized in bi-monthly sampling occasions (Aug 2015−May 2016). We fitted CR models using a multievent formulation to explicitly handle uncertainty in individual classification, and accordingly examined 2 model scenarios: one reflecting a traditional approach to classifying individuals (i.e., minimizing the misclassification of wolves as hybrids; Type 1 error), and the other using a more stringent criterion aimed to balance Type 1 and Type 2 error rates (i.e., the misclassification of hybrids as wolves). Compared to the sample proportion of admixed individuals in the dataset (43.6%), formally estimated prevalence was 50% under the first and 70% under the second scenario, with 71.4% and 85.7% of admixed packs, respectively. At the individual level, the proportion of dog ancestry in the wolf population averaged 7.8% (95% CI = 4.4−11%). Balancing between Type 1 and 2 error rates in assignment tests, our second scenario produced an estimate of prevalence 40% higher compared to the alternative scenario, corresponding to a 65% decrease in Type 2 and no increase in Type 1 error rates. Providing a formal and innovative estimation approach to assess prevalence in admixed wild populations, our study confirms previous population modeling indicating that reproductive barriers between wolves and dogs, or dilution of dog genes through backcrossing, should not be expected per se to prevent the spread of introgression. As anthropogenic hybridization is increasingly affecting animal species globally, our approach is of interest to a broader audience of wildlife conservationists and practitioners. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

15.
Despite ethical arguments against lethal control of wildlife populations, culling is routinely used for the management of predators, invasive or pest species, and infectious diseases. Here, we demonstrate that culling of wildlife can have unforeseen impacts that can be detrimental to future conservation efforts. Specifically, we analyzed genetic data from eastern wolves (Canis lycaon) sampled in Algonquin Provincial Park (APP), Ontario, Canada from 1964 to 2007. Research culls in 1964 and 1965 killed the majority of wolves within a study region of APP, accounting for approximately 36% of the park's wolf population at a time when coyotes were colonizing the region. The culls were followed by a significant decrease in an eastern wolf mitochondrial DNA (mtDNA) haplotype (C1) in the Park's wolf population, as well as an increase in coyote mitochondrial and nuclear DNA. The introgression of nuclear DNA from coyotes, however, appears to have been curtailed by legislation that extended wolf protection outside park boundaries in 2001, although eastern wolf mtDNA haplotype C1 continued to decline and is now rare within the park population. We conclude that the wolf culls transformed the genetic composition of this unique eastern wolf population by facilitating coyote introgression. These results demonstrate that intense localized harvest of a seemingly abundant species can lead to unexpected hybridization events that encumber future conservation efforts. Ultimately, researchers need to contemplate not only the ethics of research methods, but also that future implications may be obscured by gaps in our current scientific understanding.  相似文献   

16.
The question of the origins of the dog has been much debated. The dog is descended from the wolf that at the end of the last glaciation (the archaeologically hypothesized period of dog domestication) was one of the most widespread among Holarctic mammals. Scenarios provided by genetic studies range from multiple dog-founding events to a single origin in East Asia. The earliest fossil dogs, dated approximately 17-12,000 radiocarbon ((14)C) years ago (YA), were found in Europe and in the Middle East. Ancient DNA (a-DNA) evidence could contribute to the identification of dog-founder wolf populations. To gain insight into the relationships between ancient European wolves and dogs we analyzed a 262-bp mitochondrial DNA control region fragment retrieved from five prehistoric Italian canids ranging in age from approximately 15,000 to approximately 3,000 (14)C YA. These canids were compared to a worldwide sample of 547 purebred dogs and 341 wolves. The ancient sequences were highly diverse and joined the three major clades of extant dog sequences. Phylogenetic investigations highlighted relationships between the ancient sequences and geographically widespread extant dog matrilines and between the ancient sequences and extant wolf matrilines of mainly East European origin. The results provide a-DNA support for the involvement of European wolves in the origins of the three major dog clades. Genetic data also suggest multiple independent domestication events. East European wolves may still reflect the genetic variation of ancient dog-founder populations.  相似文献   

17.
The identification of hybrids is often a subject of primary concern for the development of conservation and management strategies, but can be difficult when the hybridizing species are closely related and do not possess diagnostic genetic markers. However, the combined use of mitochondrial DNA (mtDNA), autosomal and Y chromosome genetic markers may allow the identification of hybrids and of the direction of hybridization. We used these three types of markers to genetically characterize one possible wolf-dog hybrid in the endangered Scandinavian wolf population. We first characterized the variability of mtDNA and Y chromosome markers in Scandinavian wolves as well as in neighboring wolf populations and in dogs. While the mtDNA data suggested that the target sample could correspond to a wolf, its Y chromosome type had not been observed before in Scandinavian wolves. We compared the genotype of the target sample at 18 autosomal microsatellite markers with those expected in pure specimens and in hybrids using assignment tests. The combined results led to the conclusion that the animal was a hybrid between a Scandinavian female wolf and a male dog. This finding confirms that inter-specific hybridization between wolves and dogs can occur in natural wolf populations. A possible correlation between hybridization and wolf population density and disturbance deserves further research.  相似文献   

18.
Human population expansion has promoted contact between wildlife and domestic animals with severe ecological consequences, such as anthropogenic hybridization. In Portugal, Iberian wolf (Canis lupus signatus) populations are considered “Endangered” and co-habit with humans so the risks of hybridization with free-ranging dogs, and livestock depredation can be particularly high. Our aim was to report the occurrence of wolf-dog hybridization in an endangered Iberian wolf sub-population, located in the south of the Douro river, Portugal. We used mitochondrial DNA and microsatellite data to investigate putative hybrids between Iberian wolves and dogs. Here, we report for the first time a wolf-dog hybrid located in the south of the Douro river. This is the second hybrid found in Portugal, and even if hybridization cases are still considered rare, they can be particularly problematic in isolated, fragmented and endangered populations, such as the one studied here. Appropriate management and conservation measures are recommended.  相似文献   

19.
The world's most endangered canid is the Ethiopian wolf Canis simensis , which is found in six isolated areas of the Ethiopian highlands with a total population of no more than 500 individuals. Ethiopian wolf populations are declining due to habitat loss and extermination by humans. Moreover, in at least one population, Ethiopian wolves are sympatric with domestic dogs, which may hybridize with them, compete for food, and act as disease vectors. Using molecular techniques, we address four questions concerning Ethiopian wolves that have conservation implications. First, we determine the relationships of Ethiopian wolves to other wolf-like canids by phylogenetic analysis of 2001 base pairs of mitochondrial DNA (mtDNA) sequence. Our results suggest that the Ethiopian wolf is a distinct species more closely related to gray wolves and coyotes than to any African canid. The mtDNA sequence similarity with gray wolves implies that the Ethiopian wolf may hybridize with domestic dogs, a recent derivative of the gray wolf. We examine this possibility through mtDNA restriction fragment analysis and analysis of nine microsatellite loci in populations of Ethiopian wolves. The results imply that hybridization has occurred between female Ethiopian wolves and male domestic dogs in one population. Finally, we assess levels of variability within and between two Ethiopian wolf populations. Although these closely situated populations are not differentiated, the level of variability in both is low, suggesting long-term effective population sizes of less than a few hundred individuals. We recommend immediate captive breeding of Ethiopian wolves to protect their gene pool from dilution and further loss of genetic variability.  相似文献   

20.
Although inbreeding can reduce individual fitness and contribute to population extinction, gene flow between inbred but unrelated populations may overcome these effects. Among extant Mexican wolves (Canis lupus baileyi), inbreeding had reduced genetic diversity and potentially lowered fitness, and as a result, three unrelated captive wolf lineages were merged beginning in 1995. We examined the effect of inbreeding and the merging of the founding lineages on three fitness traits in the captive population and on litter size in the reintroduced population. We found little evidence of inbreeding depression among captive wolves of the founding lineages, but large fitness increases, genetic rescue, for all traits examined among F1 offspring of the founding lineages. In addition, we observed strong inbreeding depression among wolves descended from F1 wolves. These results suggest a high load of deleterious alleles in the McBride lineage, the largest of the founding lineages. In the wild, reintroduced population, there were large fitness differences between McBride wolves and wolves with ancestry from two or more lineages, again indicating a genetic rescue. The low litter and pack sizes observed in the wild population are consistent with this genetic load, but it appears that there is still potential to establish vigorous wild populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号