首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

2.
Individuals are typically not randomly distributed in space; consequently ecological and evolutionary theory depends heavily on understanding the spatial structure of populations. The central challenge of landscape genetics is therefore to link spatial heterogeneity of environments to population genetic structure. Here, we employ multivariate spatial analyses to identify environmentally induced genetic structures in a single breeding population of 1174 great tits Parus major genotyped at 4701 single‐nucleotide polymorphism (SNP) loci. Despite the small spatial scale of the study relative to natal dispersal, we found multiple axes of genetic structure. We built distance‐based Moran's eigenvector maps to identify axes of pure spatial variation, which we used for spatial correction of regressions between SNPs and various external traits known to be related to fitness components (avian malaria infection risk, local density of conspecifics, oak tree density, and altitude). We found clear evidence of fine‐scale genetic structure, with 21, seven, and nine significant SNPs, respectively, associated with infection risk by two species of avian malaria (Plasmodium circumflexum and P. relictum) and local conspecific density. Such fine‐scale genetic structure relative to dispersal capabilities suggests ecological and evolutionary mechanisms maintain within‐population genetic diversity in this population with the potential to drive microevolutionary change.  相似文献   

3.
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico.  相似文献   

4.
Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population‐genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest‐induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07–2.58; observed heterozygosity = 0.23–0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source–sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest‐induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large‐scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.  相似文献   

5.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

6.
Most landscape genetic studies assess the impact of landscape elements on species' dispersal and gene flow. Many of these studies perform their analysis on all possible population pairs in a study area and do not explicitly consider the effects of spatial scale and population network topology on their results. Here, we examined the effects of spatial scale and population network topology on the outcome of a landscape genetic analysis. Additionally, we tested whether the relevant spatial scale of landscape genetic analysis could be defined by population network topology or by isolation‐by‐distance (IBD) patterns. A data set of the wetland grasshopper Stethophyma grossum, collected in a fragmented agricultural landscape, was used to analyse population network topology, IBD patterns and dispersal habitats, using least‐cost transect analysis. Landscape genetic analyses neglecting spatial scale and population network topology resulted in models with low fits, with which a most likely dispersal habitat could not be identified. In contrast, analyses considering spatial scale and population network topology resulted in high model fits by restricting landscape genetic analysis to smaller scales (0–3 km) and neighbouring populations, as represented by a Gabriel graph. These models also successfully identified a likely dispersal habitat of S. grossum. The above results suggest that spatial scale and potentially population network topology should be more explicitly considered in future landscape genetic analyses.  相似文献   

7.
Characterizing patterns of larval dispersal is essential to understanding the ecological and evolutionary dynamics of marine metapopulations. Recent research has measured local dispersal within populations, but the development of marine dispersal kernels from empirical data remains a challenge. We propose a framework to move beyond point estimates of dispersal towards the approximation of a simple dispersal kernel, based on the hypothesis that the structure of the seascape is a primary predictor of realized dispersal patterns. Using the coral reef fish Elacatinus lori as a study organism, we use genetic parentage analysis to estimate self‐recruitment at a small spatial scale (<1 km). Next, we determine which simple kernel explains the observed self‐recruitment, given the influx of larvae from reef habitat patches in the seascape at a large spatial scale (up to 35 km). Finally, we complete parentage analyses at six additional sites to test for export from the focal site and compare these observed dispersal data within the metapopulation to the predicted dispersal kernel. We find 4.6% self‐recruitment (CI95%: ±3.0%) in the focal population, which is explained by the exponential kernel y = 0.915x (CI95%: y = 0.865x, y = 0.965x), given the seascape. Additional parentage analyses showed low levels of export to nearby sites, and the best‐fit line through the observed dispersal proportions also revealed a declining function y = 0.77x. This study lends direct support to the hypothesis that the probability of larval dispersal declines rapidly with distance in Atlantic gobies in continuously distributed habitat, just as it does in the Indo‐Pacific damselfishes in patchily distributed habitat.  相似文献   

8.
Tropical trees often display long‐distance pollen dispersal, even in highly fragmented landscapes. Understanding how patterns of spatial isolation influence pollen dispersal and interact with background patterns of fine‐scale spatial genetic structure (FSGS) is critical for evaluating the genetic consequences of habitat fragmentation. In the endangered tropical timber tree Dysoxylum malabaricum (Meliaceae), we apply eleven microsatellite markers with paternity and parentage analysis to directly estimate historic gene flow and contemporary pollen dispersal across a large area (216 km2) in a highly fragmented agro‐forest landscape. A comparison of genetic diversity and genetic structure in adult and juvenile life stages indicates an increase in differentiation and FSGS over time. Paternity analysis and parentage analysis demonstrate high genetic connectivity across the landscape by pollen dispersal. A comparison between mother trees in forest patches with low and high densities of adult trees shows that the frequency of short‐distance mating increases, as does average kinship among mates in low‐density stands. This indicates that there are potentially negative genetic consequences of low population density associated with forest fragmentation. Single isolated trees, in contrast, frequently receive heterogeneous pollen from distances exceeding 5 km. We discuss the processes leading to the observed patterns of pollen dispersal and the implications of this for conservation management of D. malabaricum and tropical trees more generally.  相似文献   

9.
Directed dispersal by animal vectors has been found to have large effects on the structure and dynamics of plant populations adapted to frugivory. Yet, empirical data are lacking on the potential of directed dispersal by rotational grazing of domestic animals to mediate gene flow across the landscape. Here, we investigated the potential effect of large‐flock shepherding on landscape‐scale genetic structure in the calcareous grassland plant Dianthus carthusianorum, whose seeds lack morphological adaptations to dispersal to animals or wind. We found a significant pattern of genetic structure differentiating population within grazed patches of three nonoverlapping shepherding systems and populations of ungrazed patches. Among ungrazed patches, we found a strong and significant effect of isolation by distance (r = 0.56). In contrast, genetic distance between grazed patches within the same herding system was unrelated to geographical distance but significantly related to distance along shepherding routes (r = 0.44). This latter effect of connectivity along shepherding routes suggests that gene flow is spatially restricted occurring mostly between adjacent populations. While this study used nuclear markers that integrate gene flow by pollen and seed, the significant difference in the genetic structure between ungrazed patches and patches connected by large‐flock shepherding indicates the potential of directed seed dispersal by sheep across the landscape.  相似文献   

10.
Zooplanktonic taxa have a greater number of distinct populations and species than might be predicted based on their large population sizes and open‐ocean habitat, which lacks obvious physical barriers to dispersal and gene flow. To gain insight into the evolutionary mechanisms driving genetic diversification in zooplankton, we developed eight microsatellite markers to examine the population structure of an abundant, globally distributed mesopelagic copepod, Haloptilus longicornis, at 18 sample sites across the Atlantic and Pacific Oceans (= 761). When comparing our microsatellite results with those of a prior study that used a mtDNA marker (mtCOII,= 1059, 43 sample sites), we unexpectedly found evidence for the presence of a cryptic species pair. These species were globally distributed and apparently sympatric, and were separated by relatively weak genetic divergence (reciprocally monophyletic mtCOII lineages 1.6% divergent; microsatellite FST ranging from 0.28 to 0.88 across loci, P < 0.00001). Using both mtDNA and microsatellite data for the most common of the two species (= 669 for microsatellites, = 572 for mtDNA), we also found evidence for allopatric barriers to gene flow within species, with distinct populations separated by continental landmasses and equatorial waters in both the Atlantic and Pacific Ocean basins. Our study shows that oceanic barriers to gene flow can act as a mechanism promoting allopatric diversification in holoplanktonic taxa, despite the high potential dispersal abilities and pelagic habitat for these species.  相似文献   

11.
Genetic diversity within and among populations and species is influenced by complex demographic and evolutionary processes. Despite extensive research, there is no consensus regarding how landscape structure, spatial distribution, gene flow, and population dynamics impact genetic composition of natural populations. Here, we used amplified fragment length polymorphisms (AFLPs) to investigate effects of population size, geographic isolation, immigration, and gene flow on genetic structure, divergence, and diversity in populations of Tetrix subulata pygmy grasshoppers (Orthoptera: Tetrigidae) from 20 sampling locations in southern Sweden. Analyses of 1564 AFLP markers revealed low to moderate levels of genetic diversity (PPL = 59.5–90.1; Hj = 0.23–0.32) within and significant divergence among sampling localities. This suggests that evolution of functional traits in response to divergent selection is possible and that gene flow is restricted. Genetic diversity increased with population size and with increasing proportion of long‐winged phenotypes (a proxy of recent immigration) across populations on the island of Öland, but not on the mainland. Our data further suggested that the open water separating Öland from the mainland acts as a dispersal barrier that restricts migration and leads to genetic divergence among regions. Isolation by distance was evident for short interpopulation distances on the mainland, but gradually disappeared as populations separated by longer distances were included. Results illustrate that integrating ecological and molecular data is key to identifying drivers of population genetic structure in natural populations. Our findings also underscore the importance of landscape structure and spatial sampling scheme for conclusions regarding the role of gene flow and isolation by distance.  相似文献   

12.
Landscape features are known to alter the spatial genetic variation of aboveground organisms. Here, we tested the hypothesis that the genetic structure of belowground organisms also responds to landscape structure. Microsatellite markers were used to carry out a landscape genetic study of two endogeic earthworm species, Allolobophora chlorotica (N = 440, eight microsatellites) and Aporrectodea icterica (N = 519, seven microsatellites), in an agricultural landscape in the North of France, where landscape features were characterized with high accuracy. We found that habitat fragmentation impacted genetic variation of earthworm populations at the local scale. A significant relationship was observed between genetic diversity (He, Ar) and several landscape features in A. icterica populations and A. chlorotica. Moreover, a strong genetic differentiation between sites was observed in both species, with a low degree of genetic admixture and high Fst values. The landscape connectivity analysis at the regional scale, including isolation by distance, least‐cost path and cost‐weighted distance approaches, showed that genetic distances were linked to landscape connectivity in A. chlorotica. This indicates that the fragmentation of natural habitats has shaped their dispersal patterns and local effective population sizes. Landscape connectivity analysis confirmed that a priori favourable habitats such as grasslands may constitute dispersal corridors for these species.  相似文献   

13.
Here we characterize genetic patterns across the range of House Sparrows in Kenya using six microsatellite markers. We screened House Sparrows from two remote locations in northern Kenya, Marsabit (n = 24) and Wajir (n = 27), which are separated from other colonized areas in Kenya by minimally developed, arid habitat, and then compared these birds with House Sparrows in 10 more central and longer established Kenyan cities (n = 233) in this range. House Sparrows from Marsabit and Wajir originated from a separate source, probably Somalia and/or Ethiopia, from other Kenyan House Sparrows, probably Mombasa. Furthermore, the genetic characteristics of northern and southern populations indicate that they have not yet mixed, supporting a hypothesis that the large, minimally (human) developed, arid landscape spanning nearly all of northern Kenya, including the 100 000 km2 Chalbi Desert, is a barrier to dispersal for House Sparrows.  相似文献   

14.
Historically, models of the invasion and biological control of insect pests have omitted heterogeneities in the spatial structure of the targeted populations. In this study, we use stochastic network simulations to examine explicitly population heterogeneity as a function of landscape structure and insect behavior. We show that when insects are distributed non-randomly across a heterogeneous landscape, control can be significantly hindered. However, when insect populations are clustered as a result of limited dispersal, genetic control efficiency can be enhanced. In developing the model, we relax a key assumption of previous theoretical studies of genetic control: that released genetic control insects remain homogenously distributed irrespective of the spatial structure of the wild type populations. Here, this behavior (termed the ‘coverage proportion’) is parameterized and its properties are explored. We show that landscape heterogeneity and limited dispersal have little effect on the critical coverage proportion necessary for control.  相似文献   

15.
Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.  相似文献   

16.
Anthropogenic habitat fragmentation — ubiquitous in modern ecosystems — has strong impacts on gene flow and genetic population structure. Reptiles may be particularly susceptible to the effects of fragmentation because of their extreme sensitivity to environmental conditions and limited dispersal. We investigate fine-scale spatial genetic structure, individual relatedness, and sex-biased dispersal in a large population of a long-lived reptile (tuatara, Sphenodon punctatus) on a recently fragmented island. We genotyped individuals from remnant forest, regenerating forest, and grassland pasture sites at seven microsatellite loci and found significant genetic structuring (RST = 0.012) across small distances (< 500 m). Isolation by distance was not evident, but rather, genetic distance was weakly correlated with habitat similarity. Only individuals in forest fragments were correctly assignable to their site of origin, and individual pairwise relatedness in one fragment was significantly higher than expected. We did not detect sex-biased dispersal, but natural dispersal patterns may be confounded by fragmentation. Assignment tests showed that reforestation appears to have provided refuges for tuatara from disturbed areas. Our results suggest that fine-scale genetic structuring is driven by recent habitat modification and compounded by the sedentary lifestyle of these long-lived reptiles. Extreme longevity, large population size, simple social structure and random dispersal are not strong enough to counteract the genetic structure caused by a sedentary lifestyle. We suspect that fine-scale spatial genetic structuring could occur in any sedentary species with limited dispersal, making them more susceptible to the effects of fragmentation.  相似文献   

17.
1. We performed spatial genetic analyses, incorporating landscape genetic methods using microsatellite data and phylogeographic analyses using mtDNA data, to identify the principal factors that determine population heterogeneity of the tropical freshwater fish, Mogurnda mogurnda, in the Daly River, northern Australia. We tested the individual and interactive effects of several environmental variables on spatial genetic patterns, including metrics relating to connectivity (i.e. stream distance, maximum stream gradient and elevation), habitat size (i.e. mean annual discharge) and a categorical variable relating to population history, as determined by mtDNA phylogeographic analyses. The Daly River is geomorphologically and hydrologically complex, and M. mogurnda has life history traits that limit its dispersal potential at river basin scales. Thus, we predicted that variables relating to connectivity would be the most important landscape factors driving population structure of the species. 2. Tree‐based phylogeographic analyses indicated four divergent mtDNA lineages within M. mogurnda in the Daly River, although three of the lineages were sympatric in various combinations and did not correspond with microsatellite groups identified by assignment tests. The allopatric mtDNA lineage detected in the uppermost part of the catchment was also identified as being highly differentiated by the microsatellite data, strongly suggesting that it may be a cryptic species. This site was therefore excluded from subsequent landscape genetic analyses. 3. Analyses of Molecular Variance indicated that M. mogurnda has a hierarchical population structure in the Daly River, thus supporting theoretical expectations that hierarchically arranged river habitats in dendritic systems impose hierarchal population structures on lotic species. 4. All landscape genetic analyses rejected stream distance, and supported stream gradient, as the major determinant of spatial genetic variation in M. mogurnda in the Daly River. Support for elevation as a determinant of spatial genetic patterns differed among the landscape genetic methods. Several of the landscape genetic methods also indicate that population history, including secondary contact between divergent and formerly allopatric genetic lineages, has a strong influence on spatial genetic patterns within M. mogurnda in the Daly River. 5. This study demonstrates the need to consider multiple environmental factors, especially factors relating to connectivity, and their interactions in spatial genetic analysis, rather than just geographic distance. Importantly, it demonstrates the need to account for population history and evolutionary divergences in landscape genetic analyses.  相似文献   

18.
Miscanthus lutarioriparius is an endemic species that grows along the middle and lower reaches of the Yangtze River and is a valuable source of germplasm for the development of second‐generation energy crops. The plant that propagates via seeds, stem nodes, and rhizomes shows high phenotypic variation and strong local adaptation. Here, we examined the magnitude and spatial distribution of genetic variation in M. lutarioriparius across its entire distributional range and tested underlying factors that shaped its genetic variation. Population genetic analyses were conducted on 644 individuals from 25 populations using 16 microsatellite markers. M. lutarioriparius exhibited a high level of genetic variation (HE = 0.682–0.786; A= 4.74–8.06) and a low differentiation (FST = 0.063; Dest = 0.153). Of the total genetic variation, 10% was attributed to the differences among populations (df = 24, < 0.0001), whereas 90% was attributed to the differences among individuals (df = 619, ≤ 0.0001). Genetic diversity did not differ significantly across longitudes and did not increase in the populations growing downstream of the Yangtze River. However, significant associations were found between genetic differentiation and spatial distance. Six genetic discontinuities were identified, which mostly distributed among downstream populations. We conclude that anthropogenic factors and landscape features both contributed to shaping the pattern of gene flow in M. lutarioriparius, including long‐distance bidirectional dispersal. Our results explain the genetic basis of the high degree of adaptability in M. lutarioriparius and identify potential sources of new germplasm for the domestication of this potential second‐generation energy crop.  相似文献   

19.

Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster (Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall F ST of 0.0016 (P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus (P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation (P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling.

  相似文献   

20.
Marine populations are typically characterized by weak genetic differentiation due to the potential for long‐distance dispersal favouring high levels of gene flow. However, strong directional advection of water masses or retentive hydrodynamic forces can influence the degree of genetic exchange among marine populations. To determine the oceanographic drivers of genetic structure in a highly dispersive marine invertebrate, the giant California sea cucumber (Parastichopus californicus), we first tested for the presence of genetic discontinuities along the coast of North America in the northeastern Pacific Ocean. Then, we tested two hypotheses regarding spatial processes influencing population structure: (i) isolation by distance (IBD: genetic structure is explained by geographic distance) and (ii) isolation by resistance (IBR: genetic structure is driven by ocean circulation). Using RADseq, we genotyped 717 individuals from 24 sampling locations across 2,719 neutral SNPs to assess the degree of population differentiation and integrated estimates of genetic variation with inferred connectivity probabilities from a biophysical model of larval dispersal mediated by ocean currents. We identified two clusters separating north and south regions, as well as significant, albeit weak, substructure within regions (FST = 0.002, = .001). After modelling the asymmetric nature of ocean currents, we demonstrated that local oceanography (IBR) was a better predictor of genetic variation (R2 = .49) than geographic distance (IBD) (R2 = .18), and directional processes played an important role in shaping fine‐scale structure. Our study contributes to the growing body of literature identifying significant population structure in marine systems and has important implications for the spatial management of P. californicus and other exploited marine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号