共查询到20条相似文献,搜索用时 15 毫秒
1.
McRae BH 《Evolution; international journal of organic evolution》2006,60(8):1551-1561
Despite growing interest in the effects of landscape heterogeneity on genetic structuring, few tools are available to incorporate data on landscape composition into population genetic studies. Analyses of isolation by distance have typically either assumed spatial homogeneity for convenience or applied theoretically unjustified distance metrics to compensate for heterogeneity. Here I propose the isolation-by-resistance (IBR) model as an alternative for predicting equilibrium genetic structuring in complex landscapes. The model predicts a positive relationship between genetic differentiation and the resistance distance, a distance metric that exploits precise relationships between random walk times and effective resistances in electronic networks. As a predictor of genetic differentiation, the resistance distance is both more theoretically justified and more robust to spatial heterogeneity than Euclidean or least cost path-based distance measures. Moreover, the metric can be applied with a wide range of data inputs, including coarse-scale range maps, simple maps of habitat and nonhabitat within a species' range, or complex spatial datasets with habitats and barriers of differing qualities. The IBR model thus provides a flexible and efficient tool to account for habitat heterogeneity in studies of isolation by distance, improve understanding of how landscape characteristics affect genetic structuring, and predict genetic and evolutionary consequences of landscape change. 相似文献
2.
Genetic differentiation between natural populations is best understood as a result of both natural and anthropogenic factors. Genetic studies on large populations still living under relatively undisturbed conditions are extremely valuable to disentangle these influences. The effect of three natural (geographic distance, landscape, dispersal) factors and two anthropogenic factors (road, savannah) on gene flow was analyzed in the largest remaining forest region in the range of the endangered golden-brown mouse lemur in Madagascar. A total of 187 individuals from 12 sites were sampled and genotyped at eight polymorphic microsatellite loci. All sites exhibited similar levels of genetic variation. The level of genetic differentiation was low to moderate with pairwise F(ST) values ranging from -0.002 to 0.12, but most were significant and all sites exhibited high self-assignment rates. A spatial autocorrelation analysis was performed at two geographic scales revealing a pattern of isolation-by-distance and suggesting that no clear differences exist between male and female local dispersal. Two Bayesian approaches revealed that a stretch of savannah represented a significant barrier to movement, whereas the influence of the road on gene flow was less clear. Finally, we found that landscape characteristics, in particular altitude, play a role in the functional connectivity of the sites. The study underlines the importance of studies in relatively undisturbed conditions for the interpretation of population genetics data in fragmented environments. The results are discussed in terms of their conservation relevance for forest-dwelling animals such as most primate species. 相似文献
3.
The interactions between organisms and their environments can shape distributions of spatial genetic variation, resulting in patterns of isolation by environment (IBE) in which genetic and environmental distances are positively correlated, independent of geographic distance. IBE represents one of the most important patterns that results from the ways in which landscape heterogeneity influences gene flow and population connectivity, but it has only recently been examined in studies of ecological and landscape genetics. Nevertheless, the study of IBE presents valuable opportunities to investigate how spatial heterogeneity in ecological processes, agents of selection and environmental variables contributes to genetic divergence in nature. New and increasingly sophisticated studies of IBE in natural systems are poised to make significant contributions to our understanding of the role of ecology in genetic divergence and of modes of differentiation both within and between species. Here, we describe the underlying ecological processes that can generate patterns of IBE, examine its implications for a wide variety of disciplines and outline several areas of future research that can answer pressing questions about the ecological basis of genetic diversity. 相似文献
4.
Ivan C. Phillipsen Emily H. Kirk Michael T. Bogan Meryl C. Mims Julian D. Olden David A. Lytle 《Molecular ecology》2015,24(1):54-69
Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. 相似文献
5.
JULIE A. LEE-YAW REW DAVIDSON† BRAD H. MCRAE‡ DAVID M. GREEN§ 《Molecular ecology》2009,18(9):1863-1874
Understanding factors that influence population connectivity and the spatial distribution of genetic variation is a major goal in molecular ecology. Improvements in the availability of high-resolution geographic data have made it increasingly possible to quantify the effects of landscape features on dispersal and genetic structure. However, most studies examining such landscape effects have been conducted at very fine (e.g. landscape genetics) or broad (e.g. phylogeography) spatial scales. Thus, the extent to which processes operating at fine spatial scales are linked to patterns at larger scales remains unclear. Here, we test whether factors impacting wood frog dispersal at fine spatial scales are correlated with genetic structure at regional scales. Using recently developed methods borrowed from electrical circuit theory, we generated landscape resistance matrices among wood frog populations in eastern North America based on slope, a wetness index, land cover and absolute barriers to wood frog dispersal. We then determined whether these matrices are correlated with genetic structure based on six microsatellite markers and whether such correlations outperform a landscape-free model of isolation by resistance. We observed significant genetic structure at regional spatial scales. However, topography and landscape variables associated with the intervening habitat between sites provide little explanation for patterns of genetic structure. Instead, absolute dispersal barriers appear to be the best predictor of regional genetic structure in this species. Our results suggest that landscape variables that influence dispersal, microhabitat selection and population structure at fine spatial scales do not necessarily explain patterns of genetic structure at broader scales. 相似文献
6.
Interpreting patterns of population structure in nature is often challenging, especially in dynamic landscapes where population genetic connectivity evolves over time. In this study, we document the absence of migration-drift equilibrium in a stream-dwelling euryhaline fish resulting from past fine-scale drainage rearrangements and evaluate the relative contribution of past and current hydrological landscapes on observed population structure. Based on allelic variation at nine microsatellite loci, genetic relationships among 12 populations of brook charr, Salvelinus fontinalis, from Gros Morne National Park of Canada (GMNP, Newfoundland, Canada) did not reflect current stream hierarchical structure. In addition, we observed no correlation between population differentiation and contemporary landscape features (waterway distance and sums of altitudinal differences). Instead, population relationships were consistent with historical hydrological structure predicted a priori based on geomorphological and biogeographical evidences. Also, population differentiation was strongly correlated with inferred historical landscape features. Contemporary barriers have apparently preserved the signature of past genetic connectivity by constraining gene flow. Based on the relationships between population differentiation and current and past landscape features at various spatial scales, we suggest that brook charr genetic diversity in GMNP is mostly the result of small distance migrations at the time of colonization and subsequent differentiation through drift. This study highlights the potential of approaching landscapes from a combination of contemporary and historical perspectives when interpreting nonequilibrium population structures resulting from landscape rearrangement. 相似文献
7.
Joost A. M. Raeymaekers Gregory E. Maes Sarah Geldof Ingrid Hontis Kris Nackaerts Filip A. M. Volckaert 《Evolutionary Applications》2008,1(3):475-488
Estimating genetic connectivity in disturbed riverine landscapes is of key importance for river restoration. However, few species of the disturbed riverine fauna may provide a detailed and basin‐wide picture of the human impact on the population genetics of riverine organisms. Here we used the most abundant native fish, the three‐spined stickleback (Gasterosteus aculeatus L.), to detect the geographical determinants of genetic connectivity in the eastern part of the Scheldt basin in Belgium. Anthropogenic structures came out as the strongest determinant of population structure, when evaluated against a geographically well‐documented baseline model accounting for natural effects. These barriers not only affected genetic diversity, but they also controlled the balance between gene flow and genetic drift, and therefore may crucially disrupt the population structure of sticklebacks. Landscape models explained a high percentage of variation (allelic richness: adjusted R2 = 0.78; pairwise FST: adjusted R2 = 0.60), and likely apply to other species as well. River restoration and conservation genetics may highly benefit from riverine landscape genetics, including model building, the detection of outlier populations, and a specific test for the geographical factors controlling the balance between gene flow and genetic drift. 相似文献
8.
Many models for inference of population genetic parameters are based on the assumption that the data set at hand consists of groups displaying within-group Hardy-Weinberg equilibrium at individual loci and linkage equilibrium between loci. This assumption is commonly violated by the presence of within-group spatial structure arising from nonrandom mating of individuals due to isolation by distance (IBD). This paper proposes a model and simulation method implemented in a computer program to flexibly simulate data displaying such patterns. The program permits displaying of smooth spatial variations of allele frequencies due to IBD and more abrupt variations due to presence of strong barriers to gene flow. It is useful in assessing performance of various statistical inference methods and in designing spatial sampling schemes. This is shown by a simulation study aimed at assessing the extent to which IBD patterns affect accuracy of cluster inferences performed in models assuming panmixia. The program is also used to study the effects of spatial sampling scheme (e.g. sampling individuals in clumps or uniformly across the spatial domain). The accuracy of such inferences is assessed in terms of number of inferred populations, assignment of individuals to populations and location of borders between populations. The effect of spatial sampling was weak while the effect of IBD may be substantial, leading to the inference of spurious populations, especially when IBD was strong with respect to the size of the sampling domain. The model and program are new and have been embedded in the R package Geneland, for user convenience and compliance with existing data formats. 相似文献
9.
Nicolas Duforet‐Frebourg Michael G.B. Blum 《Evolution; international journal of organic evolution》2014,68(4):1110-1123
Patterns of isolation‐by‐distance (IBD) arise when population differentiation increases with increasing geographic distances. Patterns of IBD are usually caused by local spatial dispersal, which explains why differences of allele frequencies between populations accumulate with distance. However, spatial variations of demographic parameters such as migration rate or population density can generate nonstationary patterns of IBD where the rate at which genetic differentiation accumulates varies across space. To characterize nonstationary patterns of IBD, we infer local genetic differentiation based on Bayesian kriging. Local genetic differentiation for a sampled population is defined as the average genetic differentiation between the sampled population and fictive neighboring populations. To avoid defining populations in advance, the method can also be applied at the scale of individuals making it relevant for landscape genetics. Inference of local genetic differentiation relies on a matrix of pairwise similarity or dissimilarity between populations or individuals such as matrices of between pairs of populations. Simulation studies show that maps of local genetic differentiation can reveal barriers to gene flow but also other patterns such as continuous variations of gene flow across habitat. The potential of the method is illustrated with two datasets: single nucleotide polymorphisms from human Swedish populations and dominant markers for alpine plant species. 相似文献
10.
Amphibians are often considered excellent environmental indicator species. Natural and man‐made landscape features are known to form effective genetic barriers to amphibian populations; however, amphibians with different characteristics may have different species–landscape interaction patterns. We conducted a comparative landscape genetic analysis of two closely related syntopic frog species from central China, Pelophylax nigromaculatus (PN) and Fejervarya limnocharis (FL). These two species differ in several key life history traits; PN has a larger body size and larger clutch size, and reaches sexual maturity later than FL. Microsatellite DNA data were collected and analyzed using conventional (FST, isolation by distance (IBD), AMOVA) and recently developed (Bayesian assignment test, isolation by resistance) landscape genetic methods. As predicted, a higher level of population structure in FL (FST′ = 0.401) than in PN (FST′ = 0.354) was detected, in addition to FL displaying strong IBD patterns (r = .861) unlike PN (r = .073). A general north–south break in FL populations was detected, consistent with the IBD pattern, while PN exhibited clustering of northern‐ and southern‐most populations, suggestive of altered dispersal patterns. Species‐specific resistant landscape features were also identified, with roads and land cover the main cause of resistance to FL, and elevation the main influence on PN. These different species–landscape interactions can be explained mostly by their life history traits, revealing that closely related and ecologically similar species have different responses to the same landscape features. Comparative landscape genetic studies are important in detecting such differences and refining generalizations about amphibians in monitoring environmental changes. 相似文献
11.
Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spatially-explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal panmictic populations in an allopatric setting in their predictions of population structure and frequency of fixation of adaptive alleles. We explore initial applications of a spatially-explicit, individual-based evolutionary landscape genetics program that incorporates all factors--mutation, gene flow, genetic drift and selection--that affect the frequency of an allele in a population. We incorporate natural selection by imposing differential survival rates defined by local relative fitness values on a landscape. Selection coefficients thus can vary not only for genotypes, but also in space as functions of local environmental variability. This simulator enables coupling of gene flow (governed by resistance surfaces), with natural selection (governed by selection surfaces). We validate the individual-based simulations under Wright-Fisher assumptions. We show that under isolation-by-distance processes, there are deviations in the rate of change and equilibrium values of allele frequency. The program provides a valuable tool (cdpop v1.0; http://cel.dbs.umt.edu/software/CDPOP/) for the study of evolutionary landscape genetics that allows explicit evaluation of the interactions between gene flow and selection in complex landscapes. 相似文献
12.
Ashley M. Jensen Nicholas P. O'Neil Andrew N. Iwaniuk Theresa M. Burg 《Ecology and evolution》2019,9(10):5572-5592
The amount of dispersal that occurs among populations can be limited by landscape heterogeneity, which is often due to both natural processes and anthropogenic activity leading to habitat loss or fragmentation. Understanding how populations are structured and mapping existing dispersal corridors among populations is imperative to both determining contemporary forces mediating population connectivity, and informing proper management of species with fragmented populations. Furthermore, the contemporary processes mediating gene flow across heterogeneous landscapes on a large scale are understudied, particularly with respect to widespread species. This study focuses on a widespread game bird, the Ruffed Grouse (Bonasa umbellus), for which we analyzed samples from the western extent of the range. Using three types of genetic markers, we uncovered multiple factors acting in concert that are responsible for mediating contemporary population connectivity in this species. Multiple genetically distinct groups were detected; microsatellite markers revealed six groups, and a mitochondrial marker revealed four. Many populations of Ruffed Grouse are genetically isolated, likely by macrogeographic barriers. Furthermore, the addition of landscape genetic methods not only corroborated genetic structure results, but also uncovered compelling evidence that dispersal resistance created by areas of unsuitable habitat is the most important factor mediating population connectivity among the sampled populations. This research has important implications for both our study species and other inhabitants of the early successional forest habitat preferred by Ruffed Grouse. Moreover, it adds to a growing body of evidence that isolation by resistance is more prevalent in shaping population structure of widespread species than previously thought. 相似文献
13.
A major aim of landscape genetics is to understand how landscapes resist gene flow and thereby influence population genetic structure. An empirical understanding of this process provides a wealth of information that can be used to guide conservation and management of species in fragmented landscapes and also to predict how landscape change may affect population viability. Statistical approaches to infer the true model among competing alternatives are based on the strength of the relationship between pairwise genetic distances and landscape distances among sampled individuals in a population. A variety of methods have been devised to quantify individual genetic distances, but no study has yet compared their relative performance when used for model selection in landscape genetics. In this study, we used population genetic simulations to assess the accuracy of 16 individual‐based genetic distance metrics under varying sample sizes and degree of population genetic structure. We found most metrics performed well when sample size and genetic structure was high. However, it was much more challenging to infer the true model when sample size and genetic structure was low. Under these conditions, we found genetic distance metrics based on principal components analysis were the most accurate (although several other metrics performed similarly), but only when they were derived from multiple principal components axes (the optimal number varied depending on the degree of population genetic structure). Our results provide guidance for which genetic distance metrics maximize model selection accuracy and thereby better inform conservation and management decisions based upon landscape genetic analysis. 相似文献
14.
Aritz Ruiz‐Gonzalez Samuel A. Cushman María José Madeira Ettore Randi Benjamín J. Gómez‐Moliner 《Molecular ecology》2015,24(20):5110-5129
Landscape genetics provides a valuable framework to understand how landscape features influence gene flow and to disentangle the factors that lead to discrete and/or clinal population structure. Here, we attempt to differentiate between these processes in a forest‐dwelling small carnivore [European pine marten (Martes martes)]. Specifically, we used complementary analytical approaches to quantify the spatially explicit genetic structure and diversity and analyse patterns of gene flow for 140 individuals genotyped at 15 microsatellite loci. We first used spatially explicit and nonspatial Bayesian clustering algorithms to partition the sample into discrete clusters and evaluate hypotheses of ‘isolation by barriers’ (IBB). We further characterized the relationships between genetic distance and geographical (‘isolation by distance’, IBD) and ecological distances (‘isolation by resistance’, IBR) obtained from optimized landscape models. Using a reciprocal causal modelling approach, we competed the IBD, IBR and IBB hypotheses with each other to unravel factors driving population genetic structure. Additionally, we further assessed spatially explicit indices of genetic diversity using sGD across potentially overlapping genetic neighbourhoods that matched the inferred population structure. Our results revealed a complex spatial genetic cline that appears to be driven jointly by IBD and partial barriers to gene flow (IBB) associated with poor habitat and interspecific competition. Habitat loss and fragmentation, in synergy with past overharvesting and possible interspecific competition with sympatric stone marten (Martes foina), are likely the main factors responsible for the spatial genetic structure we observed. These results emphasize the need for a more thorough evaluation of discrete and clinal hypotheses governing gene flow in landscape genetic studies, and the potential influence of different limiting factors affecting genetic structure at different spatial scales. 相似文献
15.
Anna-Bella Failloux Michel Raymond re Ung Christine Chevillon Nicole Pasteur 《Biological journal of the Linnean Society. Linnean Society of London》1997,60(1):107-118
The population structure of the Polynesian mosquito Aedes polynesiensis was investigated using electrophoretic data from two polymorphic protein loci. Considerable differentiation was observed both within and between islands in different archipelagos (Society, Tuamotu, Austral). Gene flow evaluated by Fst estimates was independent of geographic distance between islands but related to commercial traffic intensity. The results are discussed in view of recent findings on the variability of susceptibility to insecticides and of suitability as a vector for the nematode Wuchereria bancrofti. 相似文献
16.
Gregory R. McCracken Robert Perry Donald Keefe Daniel E. Ruzzante 《Freshwater Biology》2013,58(9):1903-1917
- Freshwater systems are ideal for landscape genetics studies; they generally exhibit asymmetry in gene flow with populations arranged in a hierarchical, dendritic fashion. Such gene flow asymmetry has the potential to influence the distribution of genetic variation, with downstream populations typically exhibiting higher genetic diversity than headwater populations.
- Lake trout (Salvelinus namaycush) are widely distributed throughout temperate North America. We examined the relationship between landscape attributes, molecular genetic diversity and differentiation among lake trout populations inhabiting a hierarchically structured freshwater system in northern Labrador (the Kogaluk River drainage). Lake trout (N = 567) collected from ten lakes in this drainage were examined for polymorphism at 12 microsatellite loci. The lakes differed in connectivity, size, elevation and position within the Kogaluk catchment.
- We observed relatively high levels of population structure and little migration among lakes. Waterfalls were identified as a factor contributing to the observed differentiation.
- Although a preliminary analysis suggested an isolation‐by‐distance pattern, a subsequent decomposed pairwise regression analysis allowed the identification of outlier lakes. Removal of these outlier lakes and of one other headwater lake, isolated from the rest by several waterfalls, led to the disappearance of the isolation‐by‐distance pattern, suggesting very little or no migration among lakes despite migration being physically possible.
- Estimates of effective population size correlated with lake area but did not differ between headwater and downstream populations, nor was there a relationship with elevation, a result consistent with the evidence of very little to zero gene flow among lakes.
- Our study is the first to describe patterns of genetic diversity among lake trout populations inhabiting a spatially fragmented system in an ecologically pristine and sensitive area of northern Canada, the barren grounds of northern Labrador.
17.
Numerically small but statistically significant genetic differentiation has been found in many marine fish species despite very large census population sizes and absence of obvious barriers to migrating individuals. Analyses of morphological traits have previously identified local spawning groups of herring (Clupea harengus L.) in the environmentally heterogeneous Baltic Sea, whereas allozyme markers have not revealed differentiation. We analysed variation at nine microsatellite loci in 24 samples of spring-spawning herring collected at 11 spawning locations throughout the Baltic Sea. Significant temporal differentiation was observed at two locations, which we ascribe to sympatrically spawning but genetically divergent 'spawning waves'. Significant differentiation was also present on a geographical scale, though pairwise F(ST) values were generally low, not exceeding 0.027. Partial Mantel tests showed no isolation by geographical distance, but significant associations were observed between genetic differentiation and environmental parameters (salinity and surface temperature) (0.001 < P < or = 0.099), though these outcomes were driven mainly by populations in the southwestern Baltic Sea, which also exhibits the steepest environmental gradients. Application of a novel method for detecting barriers to gene flow by combining geographical coordinates and genetic differentiation allowed us to identify two zones of lowered gene flow. These zones were concordant with the separation of the Baltic Sea into major basins, with environmental gradients and with differences in migration behaviour. We suggest that similar use of landscape genetics approaches may increase the understanding of the biological significance of genetic differentiation in other marine fishes. 相似文献
18.
David E. V. Harter Mike Thiv Alfons Weig Anke Jentsch Carl Beierkuhnlein 《Ecology and evolution》2015,5(19):4327-4344
The Crassulacean genus Aeonium is a well‐known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra‐island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island‐endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci–environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species. 相似文献
19.
Ian J. Wang 《Evolution; international journal of organic evolution》2013,67(12):3403-3411
Understanding the effects of landscape heterogeneity on spatial genetic variation is a primary goal of landscape genetics. Ecological and geographic variables can contribute to genetic structure through geographic isolation, in which geographic barriers and distances restrict gene flow, and ecological isolation, in which gene flow among populations inhabiting different environments is limited by selection against dispersers moving between them. Although methods have been developed to study geographic isolation in detail, ecological isolation has received much less attention, partly because disentangling the effects of these mechanisms is inherently difficult. Here, I describe a novel approach for quantifying the effects of geographic and ecological isolation using multiple matrix regression with randomization. I explored the parameter space over which this method is effective using a series of individual‐based simulations and found that it accurately describes the effects of geographic and ecological isolation over a wide range of conditions. I also applied this method to a set of real‐world datasets to show that ecological isolation is an often overlooked but important contributor to patterns of spatial genetic variation and to demonstrate how this analysis can provide new insights into how landscapes contribute to the evolution of genetic variation in nature. 相似文献
20.
Isolation by distance is usually tested by the correlation of genetic and geographic distances separating all pairwise populations' combinations. However, this method can be significantly biased by only a few highly diverged populations and lose the information of individual population. To detect outlier populations and investigate the relative strengths of gene flow and genetic drift for each population, we propose a decomposed pairwise regression analysis. This analysis was applied to the well-described one-dimensional stepping-stone system of stream-dwelling Dolly Varden charr ( Salvelinus malma ). When genetic and geographic distances were plotted for all pairs of 17 tributary populations, the correlation was significant but weak ( r 2 = 0.184). Seven outlier populations were determined based on the systematic bias of the regression residuals, followed by Akaike's information criteria. The best model, 10 populations included, showed a strong pattern of isolation by distance ( r 2 = 0.758), suggesting equilibrium between gene flow and genetic drift in these populations. Each outlier population was also analysed by plotting pairwise genetic and geographic distances against the 10 nonoutlier populations, and categorized into one of the three patterns: strong genetic drift, genetic drift with a limited gene flow and a high level of gene flow. These classifications were generally consistent with a priori predictions for each population (physical barrier, population size, anthropogenic impacts). Combined the genetic analysis with field observations, Dolly Varden in this river appeared to form a mainland-island or source-sink metapopulation structure. The generality of the method will merit many types of spatial genetic analyses. 相似文献