首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome‐scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low‐crossover centres relative to the high‐crossover peripheries of chromosomes (“Chromosome Centre‐Biased Differentiation”, CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome‐scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome‐scale heterogeneity in crossover rate in evolutionary genomics.  相似文献   

2.
Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity.  相似文献   

3.
Recombination is a major evolutionary force, increasing genetic diversity and permitting efficient coevolution of fungal pathogen(s) with their host(s). The ascomycete Fusarium graminearum is a devastating pathogen of cereal crops, and can contaminate food and feed with harmful mycotoxins. Previous studies have suggested a high adaptive potential of this pathogen, illustrated by an increase in pathogenicity and resistance to fungicides. In this study, we provide the first detailed picture of the crossover events occurring during meiosis and discuss the role of recombination in pathogen evolution. An experimental recombinant population (n = 88) was created and genotyped using 1306 polymorphic markers obtained from restriction site‐associated DNA sequencing (RAD‐seq) and aligned to the reference genome. The construction of a high‐density linkage map, anchoring 99% of the total length of the reference genome, allowed the identification of 1451 putative crossovers, positioned at a median resolution of 24 kb. The majority of crossovers (87.2%) occurred in a relatively small portion of the genome (30%). All chromosomes demonstrated recombination‐active sections, which had a near 15‐fold higher crossover rate than non‐active recombinant sections. The recombination rate showed a strong positive correlation with nucleotide diversity, and recombination‐active regions were enriched for genes with a putative role in host–pathogen interaction, as well as putative diversifying genes. Our results confirm the preliminary analysis observed in other F. graminearum strains and suggest a conserved ‘two‐speed’ recombination landscape. The consequences with regard to the evolutionary potential of this major fungal pathogen are also discussed.  相似文献   

4.
Crossovers play mechanical roles in meiotic chromosome segregation, generate genetic diversity by producing new allelic combinations, and facilitate evolution by decoupling linked alleles. In almost every species studied to date, crossover distributions are dramatically nonuniform, differing among sexes and across genomes, with spatial variation in crossover rates on scales from whole chromosomes to subkilobase hotspots. To understand the regulatory forces dictating these heterogeneous distributions a crucial first step is the fine-scale characterization of crossover distributions. Here we define the wild-type distribution of crossovers along a region of the C. elegans chromosome II at unprecedented resolution, using recombinant chromosomes of 243 hermaphrodites and 226 males. We find that well-characterized large-scale domains, with little fine-scale rate heterogeneity, dominate this region’s crossover landscape. Using the Gini coefficient as a summary statistic, we find that this region of the C. elegans genome has the least heterogeneous fine-scale crossover distribution yet observed among model organisms, and we show by simulation that the data are incompatible with a mammalian-type hotspot-rich landscape. The large-scale structural domains—the low-recombination center and the high-recombination arm—have a discrete boundary that we localize to a small region. This boundary coincides with the arm-center boundary defined both by nuclear-envelope attachment of DNA in somatic cells and GC content, consistent with proposals that these features of chromosome organization may be mechanical causes and evolutionary consequences of crossover recombination.  相似文献   

5.
Meiotic crossovers facilitate chromosome segregation and create new combinations of alleles in gametes. Crossover frequency varies along chromosomes and crossover interference limits the coincidence of closely spaced crossovers. Crossovers can be measured by observing the inheritance of linked transgenes expressing different colors of fluorescent protein in Arabidopsis pollen tetrads. Here we establish DeepTetrad, a deep learning‐based image recognition package for pollen tetrad analysis that enables high‐throughput measurements of crossover frequency and interference in individual plants. DeepTetrad will accelerate the genetic dissection of mechanisms that control meiotic recombination.  相似文献   

6.
A central event in sexual reproduction is the reduction in chromosome number that occurs at the meiosis I division. Most eukaryotes rely on crossing over between homologs, and the resulting chiasmata, to direct meiosis I chromosome segregation, yet make very few crossovers per chromosome pair. This indicates that meiotic recombination must be tightly regulated to ensure that each chromosome pair enjoys the crossover necessary to ensure correct segregation. Here, we investigate control of meiotic crossing over in Caenorhabditis elegans, which averages only one crossover per chromosome pair per meiosis, by constructing genetic maps of end-to-end fusions of whole chromosomes. Fusion of chromosomes removes the requirement for a crossover in each component chromosome segment and thereby reveals a propensity to restrict the number of crossovers such that pairs of fusion chromosomes composed of two or even three whole chromosomes enjoy but a single crossover in the majority of meioses. This regulation can operate over physical distances encompassing half the genome. The meiotic behavior of heterozygous fusion chromosomes further suggests that continuous meiotic chromosome axes, or structures that depend on properly assembled axes, may be important for crossover regulation.  相似文献   

7.
Deleterious mutations inevitably emerge in any evolutionary process and are speculated to decisively influence the structure of the genome. Meiosis, which is thought to play a major role in handling mutations on the population level, recombines chromosomes via non-randomly distributed hot spots for meiotic recombination. In many genomes, various types of genetic elements are distributed in patterns that are currently not well understood. In particular, important (essential) genes are arranged in clusters, which often cannot be explained by a functional relationship of the involved genes. Here we show by computer simulation that essential gene (EG) clustering provides a fitness benefit in handling deleterious mutations in sexual populations with variable levels of inbreeding and outbreeding. We find that recessive lethal mutations enforce a selective pressure towards clustered genome architectures. Our simulations correctly predict (i) the evolution of non-random distributions of meiotic crossovers, (ii) the genome-wide anti-correlation of meiotic crossovers and EG clustering, (iii) the evolution of EG enrichment in pericentromeric regions and (iv) the associated absence of meiotic crossovers (cold centromeres). Our results furthermore predict optimal crossover rates for yeast chromosomes, which match the experimentally determined rates. Using a Saccharomyces cerevisiae conditional mutator strain, we show that haploid lethal phenotypes result predominantly from mutation of single loci and generally do not impair mating, which leads to an accumulation of mutational load following meiosis and mating. We hypothesize that purging of deleterious mutations in essential genes constitutes an important factor driving meiotic crossover. Therefore, the increased robustness of populations to deleterious mutations, which arises from clustered genome architectures, may provide a significant selective force shaping crossover distribution. Our analysis reveals a new aspect of the evolution of genome architectures that complements insights about molecular constraints, such as the interference of pericentromeric crossovers with chromosome segregation.  相似文献   

8.
Meneely PM  Farago AF  Kauffman TM 《Genetics》2002,162(3):1169-1177
Regulation of both the number and the location of crossovers during meiosis is important for normal chromosome segregation. We used sequence-tagged site polymorphisms to examine the distribution of all crossovers on the X chromosome during oogenesis and on one autosome during both oogenesis and spermatogenesis in Caenorhabditis elegans. The X chromosome has essentially one crossover during oogenesis, with only three possible double crossover exceptions among 220 recombinant X chromosomes. All three had one of the two crossovers in the same chromosomal interval, suggesting that crossovers in that interval do not cause interference. No other interval was associated with double crossovers. Very high interference was also found on an autosome during oogenesis, implying that each chromosome has only one crossover during oogenesis. During spermatogenesis, recombination on this autosome was reduced by approximately 30% compared to oogenesis, but the relative distribution of the residual crossovers was only slightly different. In contrast to previous results with other autosomes, no double crossover chromosomes were observed. Despite an increased frequency of nonrecombinant chromosomes, segregation of a nonrecombinant autosome during spermatogenesis appears to occur normally. This indicates that an achiasmate segregation system helps to ensure faithful disjunction of autosomes during spermatogenesis.  相似文献   

9.
The giant grouper (Epinephelus lanceolatus) is the largest coral reef teleost, with a native range that spans temperate and tropical waters in the Pacific and the Indian Oceans. It is cultured artificially and used as a breeding species in aquaculture due to its rapid growth rate. Here we report a giant grouper genome assembled at the chromosome scale from sequences generated using Illumina and high‐throughput chromatin conformation capture (Hi‐C) technology. The assembly comprised 1.086 Gb, with 98.4% of the scaffold sequences anchored into 24 chromosomes. The contig and scaffold N50 values were 119.9 kb and 46.2 Mb, respectively. The assembly is of high integrity, including 96.4% universal single‐copy orthologues based on BUSCO analysis. Through chromosome‐scale evolution analysis, we identified alignments of six giant grouper chromosomes to three stickleback chromosomes and some of the genes located within the breakpoints of reshuffling events may related to development and growth. From the 24,718 protein‐coding genes, we found that several gene families related to innate immunity and glycan biosynthesis were significantly expanded in the giant grouper genome compared to other teleost genomes. In addition, we identified several genes related to the hormone signalling pathway and innate immunity that have experienced positive selection or accelerated evolution, implicating their roles in immune defence and fast growth of the species. The high‐quality genome assembly will provide a valuable genomic resource for further biological and evolutionary studies, and useful genomic tools for breeding of the giant grouper.  相似文献   

10.
Gradual degradation seems inevitable for non‐recombining sex chromosomes. This has been supported by the observation of degenerated non‐recombining sex chromosomes in a variety of species. The human Y chromosome has also degenerated significantly during its evolution, and theories have been advanced that the Y chromosome could disappear within the next ~5 million years, if the degeneration rate it has experienced continues. However, recent studies suggest that this is unlikely. Conservative evolutionary forces such as strong purifying selection and intrachromosomal repair through gene conversion balance the degeneration tendency of the Y chromosome and maintain its integrity after an initial period of faster degeneration. We discuss the evidence both for and against the extinction of the Y chromosome. We also discuss potential insights gained on the evolution of sex‐determining chromosomes by studying simpler sex‐determining chromosomal regions of unicellular and multicellular microorganisms.  相似文献   

11.
Meiotic recombination shapes evolution and helps to ensure proper chromosome segregation in most species that reproduce sexually. Recombination itself evolves, with species showing considerable divergence in the rate of crossing‐over. However, the genetic basis of this divergence is poorly understood. Recombination events are produced via a complicated, but increasingly well‐described, cellular pathway. We apply a phylogenetic comparative approach to a carefully selected panel of genes involved in the processes leading to crossovers—spanning double‐strand break formation, strand invasion, the crossover/non‐crossover decision, and resolution—to reconstruct the evolution of the recombination pathway in eutherian mammals and identify components of the pathway likely to contribute to divergence between species. Eleven recombination genes, predominantly involved in the stabilization of homologous pairing and the crossover/non‐crossover decision, show evidence of rapid evolution and positive selection across mammals. We highlight TEX11 and associated genes involved in the synaptonemal complex and the early stages of the crossover/non‐crossover decision as candidates for the evolution of recombination rate. Evolutionary comparisons to MLH1 count, a surrogate for the number of crossovers, reveal a positive correlation between genome‐wide recombination rate and the rate of evolution at TEX11 across the mammalian phylogeny. Our results illustrate the power of viewing the evolution of recombination from a pathway perspective.  相似文献   

12.
Studies of the variation in recombination rate across the genome provide a better understanding of evolutionary genomics and are also an important step towards mapping and dissecting complex traits in domestic animals. With the recent completion of the porcine genome sequence and the availability of a high‐density porcine single nucleotide polymorphism (SNP) array, it is now possible to construct a high‐density porcine linkage map and estimate recombination rate across the genome. A total of 416 animals were genotyped with the Porcine SNP60BeadChip, and high‐density chromosome linkage maps were constructed using CRI‐MAP, assuming the physical order of the Sscrofa10 assembly. The total linkage map length was 2018.79 cM, using 658 meioses and 14 503 SNPs. The estimated average recombination rate across the porcine autosomes was 0.86 cM/Mb. However, a large variation in recombination rate was observed among chromosomes. The estimated average recombination rates (cM/Mb) per chromosome ranged from 0.48 in SSC1 to 1.48 in SSC10, displaying a significant negative correlation with the chromosome sizes. In addition, the analysis of the variation in the recombination rates taking 1‐Mb sliding windows has allowed us to demonstrate the variation in recombination rates within chromosomes. In general, a larger recombination rate was observed in the extremes than in the centre of the chromosome. Finally, the ratio between female and male recombination rates was also inferred, obtaining a value of 1.38, with the heterogametic sex having the least recombination.  相似文献   

13.
Marine mammals are important models for studying convergent evolution and aquatic adaption, and thus reference genomes of marine mammals can provide evolutionary insights. Here, we present the first chromosome‐level marine mammal genome assembly based on the data generated by the BGISEQ‐500 platform, for a stranded female sperm whale (Physeter macrocephalus). Using this reference genome, we performed chromosome evolution analysis of the sperm whale, including constructing ancestral chromosomes, identifying chromosome rearrangement events and comparing with cattle chromosomes, which provides a resource for exploring marine mammal adaptation and speciation. We detected a high proportion of long interspersed nuclear elements and expanded gene families, and contraction of major histocompatibility complex region genes which were specific to sperm whale. Using comparisons with sheep and cattle, we analysed positively selected genes to identify gene pathways that may be related to adaptation to the marine environment. Further, we identified possible convergent evolution in aquatic mammals by testing for positively selected genes across three orders of marine mammals. In addition, we used publicly available resequencing data to confirm a rapid decline in global population size in the Pliocene to Pleistocene transition. This study sheds light on the chromosome evolution and genetic mechanisms underpinning sperm whale adaptations, providing valuable resources for future comparative genomics.  相似文献   

14.
Recombination is the exchange of genetic material between homologous chromosomes via physical crossovers. High-throughput sequencing approaches detect crossovers genome wide to produce recombination rate maps but are difficult to scale as they require large numbers of recombinants individually sequenced. We present a simple and scalable pooled-sequencing approach to experimentally infer near chromosome-wide recombination rates by taking advantage of non-Mendelian allele frequency generated from a fitness differential at a locus under selection. As more crossovers decouple the selected locus from distal loci, the distorted allele frequency attenuates distally toward Mendelian and can be used to estimate the genetic distance. Here, we use marker selection to generate distorted allele frequency and theoretically derive the mathematical relationships between allele frequency attenuation, genetic distance, and recombination rate in marker-selected pools. We implemented nonlinear curve-fitting methods that robustly estimate the allele frequency decay from batch sequencing of pooled individuals and derive chromosome-wide genetic distance and recombination rates. Empirically, we show that marker-selected pools closely recapitulate genetic distances inferred from scoring recombinants. Using this method, we generated novel recombination rate maps of three wild-derived strains of Drosophila melanogaster, which strongly correlate with previous measurements. Moreover, we show that this approach can be extended to estimate chromosome-wide crossover interference with reciprocal marker selection and discuss how it can be applied in the absence of visible markers. Altogether, we find that our method is a simple and cost-effective approach to generate chromosome-wide recombination rate maps requiring only one or two libraries.  相似文献   

15.
Broad-scale differences in crossover rate across the genome have been characterized in most genomes studied. Fine-scale differences, however, have only been examined in a few taxa, such as Arabidopsis, yeast, humans, and mice. No prior studies have directly looked for fine-scale recombination rate heterogeneity in Drosophila. We produced 370 Drosophila pseudoobscura containing a crossover event within the 2-megabase (MB) region between the genes yellow and white. We then examined 19 intervals within this region and determined where the crossovers occurred. We found that recombination events occur nonrandomly on a small scale and that mild “hotspots“ of a few kilobases exist in Drosophila. Among the regions studied, recombination rates varied from 1.4 to 52 cM/MB. We also observed a trend toward high codon bias in regions of high recombination. Finally, we identified a significantly positive correlation between recombination rate and simple repeats, as well as the motif CACAC. These sequence features may contribute to broad-scale variation in crossover rate and, thus, shed light on features associated with crossover rate heterogeneity at a genome-wide scale. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Dmitri Petrov]  相似文献   

16.
Crossing-over between homologous chromosomes facilitates proper disjunction of chromosomes during meiosis I. In many organisms, gene functions that are essential to crossing-over also facilitate the intimate chromosome pairing called "synapsis." Many organisms--including budding yeast, humans, zebrafish, Drosophila, and Arabidopsis--regulate the distribution of crossovers, so that, most of the time, each chromosome bundle gets at least one crossover while the mean number of crossovers per chromosome remains modest. This regulation is obtained through crossover interference. Recent evidence suggests that the organisms that use recombination functions to achieve synapsis have two classes of crossovers, only one of which is subject to interference. We statistically test this two-pathway hypothesis in the CEPH data and find evidence to support the two-pathway hypothesis in humans.  相似文献   

17.
Given their tremendous importance for correct chromosome segregation, the number and distribution of crossovers are tightly controlled during meiosis. In this review, we give an overview of crossover formation in polyploid Brassica hybrids and haploids that illustrates or underscores several aspects of crossover control. We first demonstrate that multiple targets for crossover formation (i.e. different but related chromosomes or duplicated regions) are sorted out during meiosis based on their level of relatedness. In euploid Brassica napus (AACC; 2n = 38), crossovers essentially occur between homologous chromosomes and only a few of them form between homeologues. The situation is different in B. napus haploids in which crossovers preferentially occur between homeologous chromosomes and a few can then form between more divergent duplicated regions. We then provide evidence that the frequency of crossovers between a given pair of chromosomes is influenced by the karyotypic and genetic composition of the plants that undergo meiosis. For instance, genetic evidence indicates that the number of crossovers between exactly the same pairs of homologous A chromosomes gets a boost in Brassica digenomic tetraploid (AACC) and triploid (AAC) hybrids. Increased autosyndesis within B. napus haploids as compared to monoploid B. rapa and B. oleracea is another illustration of this process. All these observations may suggest that polyploidization overall boosts up crossover machinery and/or that the number of crossovers is modulated through inter-bivalents or univalent-bivalent cross-talk effects. The last part of this review gives an up-to-date account of what we know about the genetic control of homologous and homeologous crossover formation among Brassica species.  相似文献   

18.
The number and placement of meiotic crossover events during meiosis have important implications for the fidelity of chromosome segregation as well as patterns of inheritance. Despite the functional importance of recombination, recombination landscapes vary widely among and within species, and this can have a strong impact on evolutionary processes. A good knowledge of recombination landscapes is important for model systems in evolutionary and ecological genetics, since it can improve interpretation of genomic patterns of differentiation and genome evolution, and provides an important starting point for understanding the causes and consequences of recombination rate variation. Arabidopsis arenosa is a powerful evolutionary genetic model for studying the molecular basis of adaptation and recombination rate evolution. Here, we generate genetic maps for 2 diploid A. arenosa individuals from distinct genetic lineages where we have prior knowledge that meiotic genes show evidence of selection. We complement the genetic maps with cytological approaches to map and quantify recombination rates, and test the idea that these populations might have distinct patterns of recombination. We explore how recombination differs at the level of populations, individuals, sexes and genomic regions. We show that the positioning of crossovers along a chromosome correlates with their number, presumably a consequence of crossover interference, and discuss how this effect can cause differences in recombination landscape among sexes or species. We identify several instances of female segregation distortion. We found that averaged genome-wide recombination rate is lower and sex differences subtler in A. arenosa than in Arabidopsis thaliana.  相似文献   

19.
Assessing the immediate and long‐term evolutionary consequences of human‐mediated hybridization is of major concern for conservation biology. Several studies have documented how selection in interaction with recombination modulates introgression at a genome‐wide scale, but few have considered the dynamics of this process within and among chromosomes. Here, we used an exploited freshwater fish, the brook charr (Salvelinus fontinalis), for which decades of stocking practices have resulted in admixture between wild populations and an introduced domestic strain, to assess both the temporal dynamics and local chromosomal variation in domestic ancestry. We provide a detailed picture of the domestic ancestry patterns across the genome using about 33,000 mapped single nucleotide polymorphisms genotyped in 611 individuals from 24 supplemented populations. For each lake, we distinguished early‐ and late‐generation hybrids using information regarding admixture tracts. To assess the selective outcomes following admixture we then evaluated the relationship between recombination and admixture proportions at three different scales: the whole genome, chromosomes and within 2‐Mb windows. This allowed us to detect a wide range of evolutionary mechanisms varying along the genome, as reflected by the finding of favoured or disfavoured introgression of domestic haplotypes. Among these, the main factor modulating local ancestry was probably the presence of deleterious recessive mutations in the wild populations, which can be efficiently hidden to selection in the presence of long admixture tracts. Overall, our results emphasize the relevance of taking into consideration local ancestry information to assess both the temporal and the chromosomal variation in local admixture ancestry toward better understanding post‐hybridization evolutionary outcomes.  相似文献   

20.
B chromosomes have been reported in about 15% of eukaryotes, but long‐term dynamics of B chromosomes in a single natural population has rarely been analyzed. Prospero autumnale plants collected in 1981 and 1983 at Cuesta de La Palma population had shown the presence of B chromosomes. We analyze here seven additional samples collected between 1987 and 2015, and show that B frequency increased significantly during the 1980s and showed minor fluctuations between 2005 and 2015. A mother–offspring analysis of B chromosome transmission, at population level, showed significant drive on the male side (kB = 0.65) and significant drag on the female side (kB = 0.33), with average B transmission rate being very close to the Mendelian rate (0.5). No significant effects of B chromosomes were observed on a number of vigor and fertility‐related traits. Within a parasite/host framework, these results suggest that B chromosomes’ drive on the male side is the main pathway for B chromosome invasion, whereas B chromosome drag on the female side might be the main manifestation of host genome resistance in this species. Prospero autumnale thus illuminates a novel evolutionary pathway for B chromosome neutralization by means of a decrease in B transmission through the nondriving sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号