共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu JX Tatarenkov A Beacham TD Gorbachev V Wildes S Avise JC 《Molecular ecology》2011,20(18):3879-3893
We gathered mitochondrial DNA sequences (557 bp from the control region in 935 specimens and 668 bp of the cytochrome b gene in 139 specimens) of Pacific herring collected from 20 nearshore localities spanning the species' extensive range along the North Pacific coastlines of Asia and North America. Haplotype diversity and nucleotide diversity were high, and three major phylogeographic lineages (sequence divergences ca. 1.5%) were detected. Using a variety of phylogenetic methods, coalescent reasoning, and molecular dating interpreted in conjunction with paleoclimatic and physiographic evidence, we infer that the genetic make-up of extant populations of C. pallasii was shaped by Pleistocene environmental impacts on the historical demography of this species. A deep genealogical split that cleanly distinguishes populations in the western vs. eastern North Pacific probably originated as a vicariant separation associated with a glacial cycle that drove the species southward and isolated two ancestral populations in Asia and North America. Another deep genealogical split may have involved either a vicariant isolation of a third herring lineage (perhaps originally in the Gulf of California) or it may have resulted simply from the long coalescent times that are possible in large populations. Coalescent analyses showed that all the three evolutionary lineages of C. pallasii experienced major expansions in their most recent histories after having remained more stable in the preceding periods. Independent of the molecular calibration chosen, populations of C. pallasii appear to have remained stable or grown throughout the periods that covered at least two major glaciations, and probably more. 相似文献
2.
B. R. Barber J. Klicka 《Proceedings. Biological sciences / The Royal Society》2010,277(1694):2675-2681
Understanding the evolutionary history of the species in a particular region provides insights into how that fauna was formed. Of particular interest to biogeographers is examining the impact a geographical barrier had in generating temporal genetic diversity among codistributed species. We examined the impact a major New World barrier, the Isthmus of Tehuantepec (IT) in southern Mexico, had on a regional bird fauna. Specifically, genetic data from 10 montane-forest bird taxa were analysed using approximate Bayesian computation (ABC) to test the hypothesis of simultaneous intraspecific diversification at the IT. Because effective population size (Ne) has the greatest impact on coalescent times, thereby affecting tests of divergence among codistributed taxa, we chose priors for both current and ancestral Ne using empirical estimates of theta. The ABC method detected two discrete diversification events. Subsequent analysis with the number of diversification events constrained to two suggests that four taxa diverged in an older event, with the remaining six diverging more recently. Application of a range of mutation rates from 2.0 to 5.0% Myr−1 places both events within the Pleistocene or Late Pliocene, suggesting that fluctuations in montane habitat induced by climate cycles and a late Pliocene seaway may have fractured this montane bird fauna. The results presented here suggest this avian fauna responded in a relatively concerted fashion over the last several million years. 相似文献
3.
Pleistocene climatic cycling and diversification of the Andean treefrog, Hypsiboas andinus 总被引:1,自引:1,他引:1
Our understanding of the causes of diversification of Neotropical organisms lags behind that of Northern Hemisphere biota, especially for montane and temperate regions of southern South America. We investigated the mitochondrial DNA genealogical patterns in 262 individuals of the frog Hypsiboas andinus from 26 sites across the eastern ranges of the Andes Mountains in Argentina and Bolivia. Our phylogenetic analyses indicate at least three distinct lineages: one representing H. andinus from Northwestern Argentina and southern Bolivia, at least one H. andinus lineage from northern Bolivia, and one clade containing both H. andinus (from the southern portion of the species range) and its putative sister taxon Hypsiboas riojanus. Hypsiboas andinus samples from northern Bolivia are well differentiated and may represent distinct species. The northern Argentine H. andinus lineage and southern H. andinus/H. riojanus lineage likely diverged between 2 and 6 million years ago; their current sympatry may be the result of secondary contact due to range expansion after isolation during Andean uplift or may reflect cryptic species. Within the geographically extensive northern H. andinus clade, we found significant geographical structuring consistent with historical fragmentation and subsequent range expansion. The timing of this fragmentation and range expansion coincide with the Pleistocene, a time of extensive climatic cycling and vegetational shifts. Average divergence among clades is lower than those found for other Neotropical taxa, highlighting the potential importance of recent climatic history in diversification in the southern Andes. 相似文献
4.
Garry D. Cook Adam C. Liedloff Nicholas J. Cuff Peter S. Brocklehurst Richard J. Williams 《Austral ecology》2015,40(7):845-856
In this study, systematic variation in tree morphology across a rainfall gradient in Australia's tropical savanna biome and its implications for carbon stocks and dynamics were quantified. The aim was to support efforts to manage fire regimes to increase vegetative carbon stocks as a greenhouse gas mitigation strategy. The height of trees for a given trunk diameter declines with decreasing rainfall from 2000 to 300 mm and increasing dry season length across the Australian savanna biome. It is likely that increasing dry season length is the main driver of this decline rather declining rainfall per se. By taking account of the response of total basal area to rainfall and soil type, stand structure, and tree height and diameter relationships, the carbon stocks in live trees were estimated to decline from about 34 t ha?1 in the wetter savannas to 6 t ha?1 in the drier savannas. These values are broadly consistent with field‐based estimates. Because of the declining ratio of height to trunk diameter, trees of a given diameter in drier regions will be more likely to be killed by fires of a given intensity than trees in wetter regions. Thus single fires of given intensity are likely to have a greater proportionate impact on live tree carbon stock in drier savannas, but a much greater absolute impact in wetter savannas due to the greater total carbon stock. Projected decreases in early wet season rainfall under climate change scenarios, despite projections of little change in total precipitation in northern Australia, may lead to decreased carbon stock in live trees through two mechanisms: a reduction in total basal area and decreases in tree height for given trunk diameters. 相似文献
5.
The increase in biodiversity from high to low latitudes is a widely recognized biogeographical pattern. According to the latitudinal gradient hypothesis (LGH), this pattern was shaped by differential effects of Late Quaternary climatic changes across a latitudinal gradient. Here, we evaluate the effects of climatic changes across a tropical latitudinal gradient and its implications to diversification of an Atlantic Forest (AF) endemic passerine. We studied the intraspecific diversification and historical demography of Sclerurus scansor, based on mitochondrial (ND2, ND3 and cytb) and nuclear (FIB7) gene sequences. Phylogenetic analyses recovered three well-supported clades associated with distinct latitudinal zones. Coalescent-based methods were applied to estimate divergence times and changes in effective population sizes. Estimates of divergence times indicate that intraspecific diversification took place during Middle-Late Pleistocene. Distinct demographic scenarios were identified, with the southern lineage exhibiting a clear signature of demographic expansion, while the central one remained more stable. The northern lineage, contrasting with LGH predictions, exhibited a clear sign of a recent bottleneck. Our results suggest that different AF regions reacted distinctly, even in opposite ways, under the same climatic period, producing simultaneously favourable scenarios for isolation and contact among populations. 相似文献
6.
The southeastern Nearctic is a biodiversity hotspot that is also rich in cryptic species. Numerous hypotheses (e.g., vicariance, local adaptation, and Pleistocene speciation in glacial refugia) have been tested in an attempt to explain diversification and the observed pattern of extant biodiversity. However, previous phylogeographic studies have both supported and refuted these hypotheses. Therefore, while data support one or more of these diversification hypotheses, it is likely that taxa are forming within this region in species‐specific ways. Here, we generate a genomic data set for the cornsnakes (Pantherophis guttatus complex), which are widespread across this region, spanning both biogeographic barriers and climatic gradients. We use phylogeographic model selection combined with hindcast ecological niche models to determine regions of habitat stability through time. This combined approach suggests that numerous drivers of population differentiation explain the current diversity of this group of snakes. The Mississippi River caused initial speciation in this species complex, with more recent divergence events linked to adaptations to ecological heterogeneity and allopatric Pleistocene refugia. Lastly, we discuss the taxonomy of this group and suggest there may be additional cryptic species in need of formal recognition. 相似文献
7.
Environmental changes over the Plio‐Pleistocene have been key drivers of speciation patterns and genetic diversification in high‐latitude and mesic environments, yet comparatively little is known about the evolutionary history of species in arid environments. We applied phylogenetic and phylogeographic analyses to understand the evolutionary history of Warramaba grasshoppers from the Australian arid zone, a group including sexual and parthenogenetic lineages. Sequence data (mitochondrial COI) showed that the four major sexual lineages within Warramaba most likely diverged in the Pliocene, around 2–7 million years ago. All sexual lineages exhibited considerable phylogenetic structure. Detailed analyses of the hybrid parthenogenetic species W. virgo and its sexual progenitors showed a pattern of high phylogenetic diversity and phylogeographic structure in northern lineages, and low diversity and evidence for recent expansion in southern lineages. Northern sexual lineages persisted in localized refugia over the Pleistocene, with sustained barriers promoting divergence over this period. Southern parts of the present range became periodically unsuitable during the Pleistocene, and it is into this region that parthenogenetic lineages have expanded. Our results strongly parallel those for sexual and parthenogenetic lineages of the gecko Heteronotia from the same region, indicating a highly general effect of Plio‐Pleistocene environmental change on diversification processes in arid Australia. 相似文献
8.
Gabriela Parra‐Olea Juan Carlos Windfield Kelly R. Zamudio 《Journal of Biogeography》2012,39(2):353-370
Aim Our goal was to reconstruct the phylogenetic history and historical demography of highly divergent populations of the endemic plethodontid salamander Pseudoeurycea leprosa, to elucidate the timing and mechanisms of divergence in the Trans‐Volcanic Belt of Mexico. Location The Trans‐Volcanic Belt (TVB) of central Mexico, including the states of Mexico, Morelos, Puebla, Tlaxcala and Veracruz. Methods We sequenced the cytochrome b mitochondrial DNA gene for 281 individuals from 26 populations and nine mountain ranges in the TVB, and used Bayesian phylogenetic reconstruction and Markov chain Monte Carlo coalescent methods to infer historical demographic parameters and divergences among populations in each mountain system. Results We found deep genetic divergences between eastern and central TVB mountain systems despite their recent volcanic origin. Populations of P. leprosa show a pattern of refugial populations in the north‐eastern and eastern limits of the species’ distribution, and genetic evidence of rapid population expansion in mountain ranges of the central TVB. The oldest divergences among populations date to c. 3.8 Ma, and the most recent divergences in the central TVB are Pleistocene in age (c. 0.7 Ma). Main conclusions Given the timing and order of population diversification in P. leprosa, we conclude that early isolation in multiple habitat refuges in north‐eastern and eastern mountain ranges played an important role in structuring population diversity in the TVB, followed by population expansion and genetic divergence of the central range populations. The dynamic climatic and volcanic changes in this landscape generally coincide with the history of intra‐specific diversification in P. leprosa. Climate‐driven changes in habitat distribution in an actively changing volcanic landscape have shaped divergences in the TVB and very likely contributed to the high levels of speciation and endemism in this biodiverse region. 相似文献
9.
10.
JENNIFER M. LAMB THESHNIE NAIDOO PETER J. TAYLOR MELANIE NAPIER FANJA RATRIMOMANARIVO STEVEN M. GOODMAN 《Biological journal of the Linnean Society. Linnean Society of London》2012,106(1):18-40
The newly described molossid bat, Chaerephon atsinanana Goodman et al., 2010, endemic to eastern Madagascar, shows notably high levels of phylogeographic and genetic structure compared with allopatric Chaerephon leucogaster Grandidier, 1869 from western Madagascar. Such highly significant structuring of haplotypes among altitudinally and latitudinally stratified population groups is contrary to the expected panmixia in strong flying bats. The null model of concordance in historical demographic patterns across these two Chaerephon species was not supported. Mismatch and Bayesian skyline analyses indicated ancient stable C. atsinanana populations of constant size during the last two major Pleistocene glacial periods, making retreat into and expansion from glacial refugia an unlikely explanation for such high levels of structure, in accordance with expectations for tropical bats. Analyses were consistent with post‐refugial population expansion in the less diverse and structured C. leucogaster during the end of the last Pleistocene glacial period. We hypothesise that the pronounced genetic structuring in C. atsinanana may result from female philopatry. Furthermore, differing demographic histories of the two species may have been shaped by differing climate or habitat preferences, consistent with evidence from MaxEnt ecological niche modelling, which shows differences in variables influencing the current predicted distributions. Fossil Quaternary pollen deposits further indicate greater stability in past climatic patterns in eastern versus western Madagascar. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 18–40. 相似文献
11.
Fang Yan Weiwei Zhou Haitao Zhao Zhiyong Yuan Yunyu Wang Ke Jiang Jieqiong Jin Robert W. Murphy Jing Che Yaping Zhang 《Molecular ecology》2013,22(4):1120-1133
Paleoclimatic and paleogeological events have been identified as being the two main drivers of genetic structuring in extant organisms. We used a montane stream‐dwelling frog, Quasipaa boulengeri, to explore the relative roles played by these drivers on species in southern China, a region needing thorough studies. We detected four major matrilines, and no broadly distributed haplotypes occurred. The complex orogenesis of south‐western China drove matrilineal divergence in Q. boulengeri into highly structured geographical units. These matrilines subsequently persisted in situ with stable populations rather than undergoing expansions during glacial cycling. The unification of the upper and middle Yangtze River in the Three Gorges mountain region mediated downstream colonization of this frog. Analyses identified geological events as playing a larger role than climatic fluctuations in driving the population history of Q. boulengeri. Nuclear allele analyses indicated gene flow; this maintained genetic cohesion of the species. South‐eastern Sichuan Basin was identified as the area of secondary contact for several matrilines, and this area deserves further study and special protection. 相似文献
12.
Evaluating mechanisms of diversification in a Guineo‐Congolian tropical forest frog using demographic model selection 下载免费PDF全文
Daniel M. Portik Adam D. Leaché Danielle Rivera Michael F. Barej Marius Burger Mareike Hirschfeld Mark‐Oliver Rödel David C. Blackburn Matthew K. Fujita 《Molecular ecology》2017,26(19):5245-5263
The accumulation of biodiversity in tropical forests can occur through multiple allopatric and parapatric models of diversification, including forest refugia, riverine barriers and ecological gradients. Considerable debate surrounds the major diversification process, particularly in the West African Lower Guinea forests, which contain a complex geographic arrangement of topographic features and historical refugia. We used genomic data to investigate alternative mechanisms of diversification in the Gaboon forest frog, Scotobleps gabonicus, by first identifying population structure and then performing demographic model selection and spatially explicit analyses. We found that a majority of population divergences are best explained by allopatric models consistent with the forest refugia hypothesis and involve divergence in isolation with subsequent expansion and gene flow. These population divergences occurred simultaneously and conform to predictions based on climatically stable regions inferred through ecological niche modelling. Although forest refugia played a prominent role in the intraspecific diversification of S. gabonicus, we also find evidence for potential interactions between landscape features and historical refugia, including major rivers and elevational barriers such as the Cameroonian Volcanic Line. We outline the advantages of using genomewide variation in a model‐testing framework to distinguish between alternative allopatric hypotheses, and the pitfalls of limited geographic and molecular sampling. Although phylogeographic patterns are often species‐specific and related to life‐history traits, additional comparative studies incorporating genomic data are necessary for separating shared historical processes from idiosyncratic responses to environmental, climatic and geological influences on diversification. 相似文献
13.
Carbon balance of a tropical savanna of northern Australia 总被引:7,自引:0,他引:7
Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha–1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0–1 m) was 151±33 ton C ha–1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha–1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha–1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha–1 year–1, of which 8.0 ton C ha–1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha–1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha–1 year–1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5–6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha–1 year–1. 相似文献
14.
A five-year mark–recapture study of dusky rats (Rattus colletti) on the Adelaide River floodplain, within the Australian wet–dry tropics, revealed substantial spatial and temporal variation in demographic characteristics (abundance, condition, and rates of survival, growth, and reproduction) of the rats. Our data suggest that annual variation in the intensity and timing of monsoonal rainfall during the ‘wet-season’ is the main factor driving the demography of the rats. When total rainfall figures are modified to reflect the magnitude and duration of inundation of the floodplain each year, a link is evident between rainfall patterns and the rat population dynamics. Minor spatial variations in elevation (and hence, in the duration of inundation) across the floodplain engender large differences in rat growth rates, condition factors, survival rates, and the duration of reproductive activity each year. Because these rats have very high reproductive rates, small rain-induced differences in the duration of their reproductive season (i.e. number of litters per year) can cause massive differences in subsequent rat abundances. Hence, rat numbers can be predicted from rainfall patterns during the preceding wet-season. Similar links between rainfall, the duration of breeding, and fluctuations in abundance may typify many rodent populations in tropical and arid regions of the world. 相似文献
15.
16.
Pleistocene glaciation has been identified as an important factor shaping present-day patterns of phylogeographical structure in a diverse array of taxa. The purpose of this study was to use mitochondrial sequence data to address whether Pleistocene glaciation is also a major determinant of phylogeographical patterns in Potamopyrgus antipodarum, a freshwater snail native to New Zealand. We found that haplotypes were separated by no more than 3.7% sequence divergence, and major genetic divisions tended to occur on a north-south axis. These data fit the predictions of the hypothesis that isolation of P. antipodarum in glacial refugia at the northern and southern tip of the South Island of New Zealand during the Pleistocene glaciation underlies the present-day phylogeographical structure. Because sexual P. antipodarum occasionally produce asexual offspring, we also used these data to show that the appearance of asexuality is not phylogeographically constrained. This means that the maintenance of sex in P. antipodarum cannot be wholly due to limited contact between sexual and asexual lineages and must instead be linked to a selective advantage of sexual reproduction. 相似文献
17.
Sedivá A Janko K Slechtová V Kotlík P Simonović P Delic A Vassilev M 《Molecular ecology》2008,17(5):1277-1292
Despite increasing information about postglacial recolonization of European freshwater systems, very little is known about pre-Pleistocene history. We used data on the recent distribution and phylogenetic relationships of stone loach mitochondrial lineages to reconstruct the initial colonization pattern of the Danube river system, one of the most important refuges for European freshwater ichthyofauna. Fine-scale phylogeography of the Danubian populations revealed five highly divergent lineages of pre-Pleistocene age and suggested the multiple origin of the Danubian stone loach. The mean sequence divergence among lineages extended from 7.0% to 13.4%, which is the highest intraspecific divergence observed so far within this river system. Based on the phylogeographical patterns, we propose the following hypothesis to relate the evolution and dispersal of the studied species with the evolution of the Danube river system and the Carpathian Mountains: (i) during the warmer period in the Miocene, the areas surrounding the uplifting Alps and Carpathians served as mountainous refuges for cold-water adapted fish and promoted the diversification of its populations, and (ii) from these refuges, colonization of the emerging Danube river system may have taken place following the retreat of the Central Paratethys. Co-existence of highly divergent mtDNA lineages in a single river system shows that range shifts in response to climatic changes during the Quaternary did not cause extensive genetic homogenization in the stone loach populations. However, the wide distribution of some mtDNA lineages indicates that the Pleistocene glaciations promoted the dispersal and mixing of populations through the lowlands. 相似文献
18.
Genomic phylogeography of the endemic Mountain Black‐eye of Borneo (Chlorocharis emiliae): montane and lowland populations differ in patterns of Pleistocene diversification 下载免费PDF全文
Joseph D. Manthey Robert G. Moyle Dency F. Gawin Mustafa Abdul Rahman Mohamad Fizl Sidq Ramji Frederick H. Sheldon 《Journal of Biogeography》2017,44(10):2272-2283
19.
Phylogeography and demography of Guianan harlequin toads (Atelopus): diversification within a refuge
We investigated the genetic structure of populations of Guianan harlequin toads (genus Atelopus) and their evolutionary affinities to extra-Guianan congeners. Phylogenetic analysis of mitochondrial cytochrome b (cyt b) and NADH dehydrogenase subunit 2 (ND2) gene sequences produced well-supported clades largely corresponding to the four recognized taxa in the Guianas (Atelopus spumarius hoogmoedi, Atelopus spumarius barbotini, Atelopus franciscus, and Atelopus flavescens). Our findings suggest that the Guianan A. spumarius represent distinct evolutionary lineages that merit distinction from Amazonian conspecifics, and that the status of A. flavescens and A. franciscus is somewhat less clear. Approximately 69% of the observed genetic variation is accounted for by differences between these four recognized taxa. Coalescent-based estimates of gene flow between taxa suggest that these lineages are largely isolated from one another. Negligible rates of migration between populations and significant divergence within such close proximity suggests that although the region inhabited by these taxa is almost entirely undisturbed, significant habitat heterogeneity exists as to have produced a remarkable diversification of Atelopus within the eastern Guiana Shield. These results contradict the commonly held view of the Guiana Shield as a 'refuge' whose stability during late Tertiary and Quaternary climatic fluctuations served as a biotic reservoir. Instead, we provide evidence that climatic fluctuations during this time had a diversifying effect within the Guianan region. 相似文献
20.
Alpine environments underwent dramatic transformation during glacial–interglacial cycles, with the consequence that geographical, ecological and demographic changes of alpine populations provided the opportunity for formation of neoendemic species. Several biogeographical models have been proposed to account for the unique history of alpine populations, with different expectations of genetic divergence and speciation. The expanding alpine archipelago model proposes that alpine populations expand spatially and demographically during glacial events, dispersing between mountain ranges. Under this model, alpine populations are unlikely to diverge in isolation due to substantial interpopulation gene flow. In contrast, the alpine archipelago refuge model proposes that gene flow during glacial phases is limited and populations expand demographically during interglacial phases, increasing genetic isolation and the likelihood of speciation. We assess these models by reconstructing the evolutionary history of Colias behrii, a morphologically and ecologically distinct alpine butterfly restricted to the California Sierra Nevada. C. behrii exhibits very low genetic diversity at mitochondrial and nuclear loci, limited population structure and evidence of population expansion. C. behrii and Rocky Mountain C. meadii share identical mitochondrial haplotypes, while in contrast, nuclear data indicate common ancestry between C. behrii and Cascades Range Colias pelidne. The conflict in gene genealogies may be a result of recent expansion in North American Colias, but an isolation with migration analysis indicates that genetic patterns in C. behrii might result from differential introgression following hybridization. Based on the timing of population expansion and gene flow between mountain ranges, the expanding alpine archipelago model is supported in C. behrii. 相似文献