首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual selection involving genetically disassortative mate choice is one of several evolutionary processes that can maintain or enhance population genetic variability. Examples of reproductive systems in which choosers (generally females) select mates depending on their major histocompatibility complex (MHC) genes have been reported for several vertebrate species. Notably, the role of MHC‐dependent choice not in mating contexts, but in other kinds of social interactions such as in the establishment of complex social systems, has not yet drawn significant scientific interest and is virtually absent from the literature. We have investigated male and female MHC‐dependent choice in an invasive population of North American raccoons (Procyon lotor) in Germany. Both male and female raccoons rely on olfaction for individual recognition. Males have an unusually complex social system in which older individuals choose unrelated younger ones to form stable male coalitions that defend territories and a monopoly over females. We have confirmed that females perform MHC‐disassortative mate choice and that this behaviour fosters genetic diversity of offspring. We have also observed that males build coalitions by choosing male partners depending on their MHC, but in an assortative manner. This is the first observation of antagonistic MHC‐dependent behaviours among sexes. We show that this is the only combination of MHC‐dependent partner choice that leads to outbreeding. In the case of introduced raccoons, such behaviours can act together to promote the invasive potential of the species by increasing its adaptive genetic divergence.  相似文献   

2.
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by‐product of inbreeding avoidance based on MHC‐independent cues. Here, we used 454‐sequencing and a 10‐year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC‐dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB‐disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC‐dependent mate choice.  相似文献   

3.
Major histocompatibility complex genes (MHC), a gene cluster that controls the immune response to parasites, are regarded as an important determinant of mate choice. However, MHC‐based mate choice studies are especially rare for endangered animals. The giant panda (Ailuropoda melanoleuca), a flagship species, has suffered habitat loss and fragmentation. We investigated the genetic variation of three MHC class II loci, including DRB1, DQA1, and DQA2, for 19 mating‐pairs and 11 parent‐pairs of wild giant pandas based on long‐term field behavior observations and genetic samples. We tested four hypotheses of mate choice based on this MHC variation. We found no supporting evidence for the MHC‐based heterosis, genetic diversity, genetic compatibility and “good gene” hypotheses. These results suggest that giant pandas may not use MHC‐based signals to select mating partners, probably because limited mating opportunities or female‐biased natal dispersal restricts selection for MHC‐based mate choice, acknowledging the caveat of the small sample size often encountered in endangered animal studies. Our study provides insight into the mate choice mechanisms of wild giant pandas and highlights the need to increase the connectivity and facilitate dispersal among fragmented populations and habitats.  相似文献   

4.
Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene‐rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc‐DRB and neutral loci. Nevertheless, the age structure of Mhc‐DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within‐group outbreeding, resulting from group‐living and sex‐biased dispersal, might weaken selection for MHC‐disassortative mate choice.  相似文献   

5.
Good genes models of mate choice predict additive genetic benefits of choice whereas the compatibility hypothesis predicts nonadditive fitness benefits. Here the Chinese rose bitterling, Rhodeus ocellatus, a freshwater fish with a resource‐based mating system, was used to separate additive and nonadditive genetic benefits of female mate choice. A sequential blocked mating design was used to test female mate preferences, and a cross‐classified breeding design coupled with in vitro fertilizations for fitness benefits of mate choice. In addition, the offspring produced by the pairing of preferred and nonpreferred males were reared to maturity and their fitness traits were compared. Finally, the MHC DAB1 gene was typed and male MHC genotypes were correlated with female mate choice. Females showed significant mate preferences but preferences were not congruent among females. There was a significant interaction of male and female genotype on offspring survival, rate of development, growth rate, and body size. No significant male additive effects on offspring fitness were observed. Female mate preferences corresponded with male genetic compatibility, which correlated with MHC dissimilarity. It is proposed that in the rose bitterling genetic compatibility is the mechanism by which females obtain a fitness benefit through mate choice and that male MHC dissimilarity, likely mediated by odor cues, indicates genetic compatibility.  相似文献   

6.
Size‐assortative mating is a nonrandom association of body size between members of mating pairs and is expected to be common in species with mutual preferences for body size. In this study, we investigated whether there is direct evidence for size‐assortative mating in two species of pipefishes, Syngnathus floridae and S. typhle, that share the characteristics of male pregnancy, sex‐role reversal, and a polygynandrous mating system. We take advantage of microsatellite‐based “genetic‐capture” techniques to match wild‐caught females with female genotypes reconstructed from broods of pregnant males and use these data to explore patterns of size‐assortative mating in these species. We also develop a simulation model to explore how positive, negative, and antagonistic preferences of each sex for body size affect size‐assortative mating. Contrary to expectations, we were unable to find any evidence of size‐assortative mating in either species at different geographic locations or at different sampling times. Furthermore, two traits that potentially confer a fitness advantage in terms of reproductive success, female mating order and number of eggs transferred per female, do not affect pairing patterns in the wild. Results from model simulations demonstrate that strong mating preferences are unlikely to explain the observed patterns of mating in the studied populations. Our study shows that individual mating preferences, as ascertained by laboratory‐based mating trials, can be decoupled from realized patterns of mating in the wild, and therefore, field studies are also necessary to determine actual patterns of mate choice in nature. We conclude that this disconnect between preferences and assortative mating is likely due to ecological constraints and multiple mating that may limit mate choice in natural populations.  相似文献   

7.
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC‐based mate choice in wild mammals are under‐represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite‐derived pairwise relatedness, to attempt to distinguish MHC‐specific effects from genomewide effects. We found MHC‐assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within‐group and neighbouring‐group parent pairs, only neighbouring‐group pairs showed MHC‐assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide‐based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC‐assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.  相似文献   

8.
In this study, we investigated mating frequencies of female scorpionflies Panorpa germanica in the field using two different experimental approaches. First, the mating status of wild‐caught females was estimated on the basis of sperm numbers present inside their sperm storage organs. Secondly, the number of mating partners wild‐caught females must have had was inferred from mother‐offspring analyses of a polymorphic microsatellite locus. Our results suggest a very low mating frequency of wild female P. germanica. Consequently, the risk of sperm competition is rather low in this species. The relevance of female mate choice in relation to the low mating frequency is discussed.  相似文献   

9.
Mate choice has important evolutionary consequences because it influences assortative mating and the level of genetic variation maintained within populations. In species with genetically determined polymorphisms, nonrandom mate choice may affect the evolutionary stability and maintenance (or loss) of alternative phenotypes. We examined the mating pattern in the colour polymorphic Gouldian finch (Erythrura gouldiae), and the role of mate choice, both female and male, in maintaining the three discrete head colours (black, red and yellow). In both large captive and wild populations, Gouldian finches paired assortatively with respect to head colour. In mate choice trials, females showed a strong preference for mates with the most elaborate sexually dimorphic traits (i.e. more chromatic UV/blue plumage and longer pin-tail feathers), but did not discriminate assortatively. Unexpectedly, however, males were particularly choosy, associating and pairing only with females of their own morph-type. Although female mate choice is generally invoked as the major selective force maintaining conspicuous male colouration in sexually dichromatic species, and is typically thought to drive nonrandom mating, these findings suggest that mutual mate choice and male mate choice in particular, are an important yet neglected component of selection.  相似文献   

10.
Sexual selection hypotheses stipulate that the major histocompatibility complex genes (MHC) constitute a key molecular underpinning for mate choice in vertebrates. The last four decades saw growing empirical literature on the role of MHC diversity and dissimilarity in mate choice for a wide range of vertebrate animals, but with mixed support for its significance in natural populations. Using formal phylogenetic meta‐analysis and meta‐regression techniques, we quantitatively review the existing literature on MHC‐dependent mating preferences in nonhuman vertebrates with a focus on the role of MHC diversity and dissimilarity. Overall, we found small, statistically nonsignificant, average effect sizes for both diversity‐ and dissimilarity‐based mate choice (= 0.113 and 0.064, respectively). Importantly, however, meta‐regression models revealed statistically significant support regarding female choice for diversity, and choice for dissimilarity (regardless of choosy sex) only when dissimilarity is characterized across multiple loci. Little difference was found among vertebrate taxa; however, the lack of statistical power meant statistically significant effects were limited to some taxa. We found little sign of publication bias; thus, our results are likely to be robust. In light of our quantitative assessment, methodological improvements and fruitful future avenues of research are highlighted.  相似文献   

11.
The evolution of mate choice is a major topic in evolutionary biology because it is thought to be a key factor in trait and species diversification. Here, we aim at uncovering the ecological conditions and genetic architecture enabling the puzzling evolution of disassortative mating based on adaptive traits. This rare form of mate choice is observed for some polymorphic traits but theoretical predictions on the emergence and persistence of this behavior are largely lacking. Thus, we developed a mathematical model to specifically understand the evolution of disassortative mating based on mimetic color pattern in the polymorphic butterfly Heliconius numata. We confirm that heterozygote advantage favors the evolution of disassortative mating and show that disassortative mating is more likely to emerge if at least one allele at the trait locus is free from any recessive deleterious mutations. We modeled different possible genetic architectures underlying mate choice behavior, such as self‐referencing alleles, or specific preference or rejection alleles. Our results showed that self‐referencing or rejection alleles linked to the color pattern locus enable the emergence of disassortative mating. However, rejection alleles allow the emergence of disassortative mating only when the color pattern and preference loci are tightly linked.  相似文献   

12.
Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC‐disassortative mate choice. However, many species lack this expected pattern of MHC‐disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus‐specific primers for high‐throughput sequencing of two expressed MHC Class II B genes in Leach's storm‐petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene‐specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC‐dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection.  相似文献   

13.
Mating systems have broad impacts on how sexual selection and mate choice operate within a species, but studies of mating behavior in the laboratory may not reflect how these processes occur in the wild. Here, we examined the mating behavior of the neotropical butterfly Heliconius erato in the field by releasing larvae and virgin females and observing how they mated. H. erato is considered a pupal‐mating species (i.e., males mate with females as they emerge from the pupal case). However, we observed only two teneral mating events, and experimentally released virgins were almost all mated upon recapture. Our study confirms the presence of some pupal‐mating behavior in H. erato, but suggests that adult mating is likely the prevalent mating strategy in this species. These findings have important implications for the role of color pattern and female mate choice in the generation of reproductive isolation in this diverse genus.  相似文献   

14.
Determining whether reproductive isolation evolves through mate choice and/or gametic factors that prevent fertilization or through the post‐zygotic mechanisms of hybrid sterility or inviability is fundamental to understanding speciation. Investigation of the pre‐ and post‐zygotic components of reproductive isolation is facilitated in the pseudoscorpion, Cordylochernes scorpioides, by its indirect method of sperm transfer and viviparous embryonic development. Previous research on this species, in which mate discrimination was assessed in virgin females, suggested that female choice played only a minor role in reproductive isolation between populations from French Guiana and Panamá. Here, in a study of three allopatric populations of C. scorpioides from Panamá, we assessed mating‐stage isolation in both virgin and once‐mated females, and found that female discrimination depends critically on mating status. Virgin females were almost invariably receptive, showing no tendency to discriminate against males from allopatric populations. By contrast, non‐virgin females were significantly more likely to reject foreign males than males from their own population. Male sexual motivation could not account for differences in either female sexual receptivity or male success in sperm transfer. Allopatric and sympatric males did not differ in number of spermatophores deposited as either a female’s first or second mate. Nonetheless, allopatric males achieved significantly lower sperm transfer success not only with choosy, non‐virgin females but also with virgin females. Given the lack of behavioral discrimination by virgin females, female receptivity was not the only factor influencing differences in sperm transfer success. Multivariate analysis of spermatophore morphology suggests that the higher failure rate of matings between allopatric males and virgin females resulted from population differences in sperm packet architecture. Overall, our findings indicate that assessment of discrimination against allopatric males that is limited to virgin females may seriously underestimate the contribution of female mate choice to reproductive isolation between populations.  相似文献   

15.
The evolution and expression of mate choice behaviour in either sex depends on the sex‐specific combination of mating costs, benefits of choice and constraints on choice. If the benefits of choice are larger for one sex, we would expect that sex to be choosier, assuming that the mating costs and constraints on choice are equal between sexes. Because deliberate inbreeding is a powerful genetic method for experimental manipulation of the quality of study organisms, we tested the effects of both male and female inbreeding on egg and offspring production in Drosophila littoralis. Female inbreeding significantly reduced offspring production (mostly due to lower egg‐to‐adult viability), whereas male inbreeding did not affect offspring production (despite a slight effect of paternal inbreeding on egg‐to‐adult viability). As inbreeding depressed female quality more than male quality, the benefits of mate choice were larger for males than for females. In mate choice experiments, inbreeding did not affect male mating success (measured as a probability to be accepted as a mate in a large group), suggesting that females did not discriminate among inbred and outbred males. In contrast, female mating success was affected by inbreeding, with outbred females having higher mating success than inbred females. This result was not explained by lower activity of inbred females. Our results show that D. littoralis males benefit from mating with outbred females of high genetic quality and suggest adaptive male mate choice for female genetic quality in this species. Thus, patterns of mating success in mate choice trials mirrored the benefits of choice: the sex that benefited more from choice (i.e. males) was more choosy.  相似文献   

16.
How mate preferences evolve in the first place has been a major conundrum for sexual selection. Some hypotheses explaining this assume fitness benefit derived from subsequent generations. Major histocompatibility complex (MHC)‐based mate choice is a representative example of the mate choice that is associated with such trans‐generational mechanisms. To provide evidences for fitness benefit of MHC‐based mate choice, previous studies assessed the association between own MHC genotype and own fitness components. However, the association between MHC‐based mate choice in the parental generation and fitness components in the resultant offspring generation has only rarely been measured in wild populations. Focusing on the isolated population of the monogamous Ryukyu Scops Owl (Otus elegans interpositus) on Minami‐daito Island, Japan, we found evidence of MHC‐based mate choice. However, we found no evidence of MHC‐based mate choice increasing own reproductive success or offspring survival. This is a rare case study that directly examines the existence of the trans‐generational indirect benefit of MHC‐based mate choice for genetic compatibility from trans‐generational data in a wild bird population. By investigating the fitness benefits of mate choice, this study serves to facilitate our understanding of the evolution of MHC‐based mate choice.  相似文献   

17.
Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra‐pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.  相似文献   

18.
A two-locus haploid model of sexual selection is investigated to explore evolution of disassortative and assortative mating preferences based on imprinting. In this model, individuals imprint on a genetically transmitted trait during early ontogeny and choosy females later use those parental images as a criterion of mate choice. It is assumed that the presence or absence of the female preference is determined by a genetic locus. In order to incorporate such mechanisms as inbreeding depression and heterozygous advantage into our haploid framework, we assume that same-type matings are less fertile than different-type mating. The model suggests that: if all the females have a disassortative mating preference a viability-reducing trait may be maintained even without the fertility cost of same-type matings; a disassortative mating preference can be established even if it is initially rare, when there is a fertility cost of same-type matings. Further, an assortative mating preference is less likely to evolve than a disassortative mating preference. The model may be applicable to the evolution of MHC-disassortative mating preferences documented in house mice and humans.  相似文献   

19.
Genetic diversity is a key factor that can influence mate choice in many species. We experimentally determined the influence of this factor on mate preference in the crustacean terrestrial isopod Armadillidium vulgare. This biological model is gregarious which could increase the risk of inbreeding by mating with closely related partners. Mechanisms of inbreeding avoidance during mate choice can thus be expected. Moreover, previous studies predict that males would be the choosy sex. We performed Y‐choice tests giving males the choice between two females presenting different levels of heterozygosity and genetic similarity to the male. Our results show potential inbreeding avoidance according to the genetic characteristics of females presented to males. The higher the variation in genetic similarity to the male between females is, the higher the preference of the male towards the most dissimilar female is. Hence, male preferences may only be detectable when the difference between females’ genetic characteristics is large enough. If heterozygosity is associated with fitness in A. vulgare (as in many organisms), the patterns of mate preference we observe may be adaptive.  相似文献   

20.
Preference of con‐ over heterospecific mates leading to assortative mating can substantially contribute to pre‐zygotic reproductive isolation and prevent fitness losses if post‐zygotic hybridization barriers already exist. The jewel wasp genus Nasonia displays quite strong and well‐studied post‐zygotic reproductive isolation due to a ubiquitous Wolbachia infection causing cytoplasmic incompatibility between different species. Pre‐zygotic isolation, however, has received far less research attention in this model organism, especially concerning the mechanisms and criteria of mate choice. In the present study, we analysed mate rejection and mate acceptance rates in cross‐comparisons between all four Nasonia species. We put emphasis on observing which sex is more likely to interrupt interspecific matings and how discriminatory behaviour varies across the different species in all possible combinations. We found an asymmetric distribution of assortative mating among the four Nasonia species that appears to be highly influenced by the respective combinations of sex and species. Females appeared to be the main discriminators against heterospecific mating partners, but interestingly, we could also detect mate discrimination and rejection behaviour in males, a widely neglected factor in research on mating behaviour in general and on Nasonia in particular. Moreover, the asymmetry in the assortative mating behaviour was partially reflective of sym‐ or allopatric distributions of natural Nasonia populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号