共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed a model to determine the factors that facilitate or limit rapid polygenic adaptation. This model includes population genetic terms of mutation and both directional and stabilizing selection on a highly polygenic trait in a diploid population of finite size. First, we derived the equilibrium distribution of the allele frequencies of the multilocus model by diffusion approximation. This formula describing the equilibrium allele frequencies as a mutation‐selection‐drift balance was examined by computer simulation using parameter values inferred for human height, a well‐studied polygenic trait. Second, assuming that a sudden environmental shift of the fitness optimum occurs while the population is in equilibrium, we analyzed the adaptation of the trait to the new optimum. The speed at which the trait mean approaches the new optimum increases with the equilibrium genetic variance. Thus, large population size and/or large mutation rate may facilitate rapid adaptation. Third, the contribution of an individual locus i to polygenic adaptation depends on the compound parameter , where is the effect size, the equilibrium frequency of the trait‐increasing allele of this locus, and . Thus, only loci with large values of this parameter contribute coherently to polygenic adaptation. Given that mutation rates are relatively small, this is more likely in large populations, in which the effects of drift are limited. 相似文献
2.
The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient 下载免费PDF全文
The benefits and detriments of recombination for adaptive evolution have been studied both theoretically and experimentally, with conflicting predictions and observations. Most pertinent experiments examine recombination's effects in an unchanging environment and do not study its genomewide effects. Here, we evolved six replicate populations of either highly recombining R+ or lowly recombining R? E. coli strains in a changing environment, by introducing the novel nutrients L‐arabinose or indole into the environment. The experiment's ancestral strains are not viable on these nutrients, but 130 generations of adaptive evolution were sufficient to render them viable. Recombination conferred a more pronounced advantage to populations adapting to indole. To study the genomic changes associated with this advantage, we sequenced the genomes of 384 clones isolated from selected replicates at the end of the experiment. These genomes harbour complex changes that range from point mutations to large‐scale DNA amplifications. Among several candidate adaptive mutations, those in the tryptophanase regulator tnaC stand out, because the tna operon in which it resides has a known role in indole metabolism. One of the highly recombining populations also shows a significant excess of large‐scale segmental DNA amplifications that include the tna operon. This lineage also shows a unique and potentially adaptive combination of point mutations and DNA amplifications that may have originated independently from one another, to be joined later by recombination. Our data illustrate that the advantages of recombination for adaptive evolution strongly depend on the environment and that they can be associated with complex genomic changes. 相似文献
3.
R. C. MacLEAN 《Journal of evolutionary biology》2010,23(3):488-493
Epistatic interactions between mutations are thought to play a crucial role in a number of evolutionary processes, including adaptation and sex. Evidence for epistasis is abundant, but tests of general theoretical models that can predict epistasis are lacking. In this study, I test the ability of metabolic control theory to predict epistasis using a novel experimental approach that combines phenotypic and genetic perturbations of enzymes involved in gene expression and protein synthesis in the bacterium Pseudomonas aeruginosa. These experiments provide experimental support for two key predictions of metabolic control theory: (i) epistasis between genes involved in the same pathway is antagonistic; (ii) epistasis becomes increasingly antagonistic as mutational severity increases. Metabolic control theory is a general theory that applies to any set of genes that are involved in the same linear processing chain, not just metabolic pathways, and I argue that this theory is likely to have important implications for predicting epistasis between functionally coupled genes, such as those involved in antibiotic resistance. Finally, this study highlights the fact that phenotypic manipulations of gene activity provide a powerful method for studying epistasis that complements existing genetic methods. 相似文献
4.
5.
Rapid evolution of the intersexual genetic correlation for fitness in Drosophila melanogaster 下载免费PDF全文
Julie M. Collet Sara Fuentes Jack Hesketh Mark S. Hill Paolo Innocenti Edward H. Morrow Kevin Fowler Max Reuter 《Evolution; international journal of organic evolution》2016,70(4):781-795
Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex‐specific phenotypes. Despite its importance for sex‐specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the “LHM” population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution. 相似文献
6.
Mark L. Siegal 《Molecular ecology》2013,22(5):1187-1189
The term ‘phenotypic capacitance’ was introduced nearly 15 years ago to describe the strain‐specific effects of impairing Hsp90, a molecular chaperone, in the fly Drosophila melanogaster (Rutherford & Lindquist 1998 ). In one genetic background, Hsp90 depletion caused deformed eyes, whereas in other genetic backgrounds, the wings or abdomens or other aspects of morphology were affected. Hsp90 was therefore viewed as acting like a capacitor, allowing genetic differences to build up and to be released at a later time. In the years since, it has been debated whether capacitance is a laboratory curiosity or a major force in evolution. In this issue of Molecular Ecology, Takahashi ( 2013 ) presents evidence, from high‐resolution morphometric analysis of fly wings, that a large number of other capacitors exist in D. melanogaster, and that the variation they reveal can be quite subtle. His results advance our understanding of capacitance and contribute to a new view of its role in evolutionary adaptation. 相似文献
7.
BACKGROUND AND AIMS: The overall goal of this paper is to construct an overview of the genetic basis for flower size evolution in Silene latifolia. It aims to examine the relationship between the molecular bases for flower size and the underlying assumption of quantitative genetics theory that quantitative variation is ultimately due to the impact of a number of structural genes. SCOPE: Previous work is reviewed on the quantitative genetics and potential for response to selection on flower size, and the relationship between flower size and nuclear DNA content in S. latifolia. These earlier findings provide a framework within which to consider more recent analyses of a joint quantitative trait loci (QTL) analysis of flower size and DNA content in this species. KEY RESULTS: Flower size is a character that fits the classical quantitative genetics model of inheritance very nicely. However, an earlier finding that flower size is correlated with nuclear DNA content suggested that quantitative aspects of genome composition rather than allelic substitution at structural loci might play a major role in the evolution of flower size. The present results reported here show that QTL for flower size are correlated with QTL for DNA content, further corroborating an earlier result and providing additional support for the conclusion that localized variations in DNA content underlie evolutionary changes in flower size. CONCLUSIONS: The search image for QTL should be broadened to include overall aspects of genome regulation. As we prepare to enter the much-heralded post-genomic era, we also need to revisit our overall models of the relationship between genotype and phenotype to encompass aspects of genome structure and composition beyond structural genes. 相似文献
8.
In the decade since the first draft of the human genome was announced, genome sequencing projects have been initiated for an additional twenty-some primate species. Within the next several years, genome sequence data will likely become available for all primate genera and for most individuals within some primate populations. At the same time, gene mapping and association studies of humans and other organisms are rapidly advancing our understanding of the genetic bases of behavioral and morphological traits. Primatologists are especially well-placed to take advantage of this coming flood of genetic data. Here we discuss what this new era of primate genomics means for field primatology and highlight some of the unprecedented opportunities it will afford, particularly with regard to examining the genetic basis of primate adaptation and diversity. 相似文献
9.
Sarah J. Lehnert Tony Kess Paul Bentzen Marie Clment Ian R. Bradbury 《Molecular ecology》2020,29(12):2160-2175
As populations diverge many processes can shape genomic patterns of differentiation. Regions of high differentiation can arise due to divergent selection acting on selected loci, genetic hitchhiking of nearby loci, or through repeated selection against deleterious alleles (linked background selection); this divergence may then be further elevated in regions of reduced recombination. Atlantic salmon (Salmo salar) from Europe and North America diverged >600,000 years ago and despite some evidence of secondary contact, the majority of genetic data indicate substantial divergence between lineages. This deep divergence with potential gene flow provides an opportunity to investigate the role of different mechanisms that shape the genomic landscape during early speciation. Here, using 184,295 single nucleotide polymorphisms (SNPs) and 80 populations, we investigate the genomic landscape of differentiation across the Atlantic Ocean with a focus on highly differentiated regions and the processes shaping them. We found evidence of high (mean FST = 0.26) and heterogeneous genomic differentiation between continents. Genomic regions associated with high trans‐Atlantic differentiation ranged in size from single loci (SNPs) within important genes to large regions (1–3 Mbp ) on four chromosomes (Ssa06, Ssa13, Ssa16 and Ssa19). These regions showed signatures consistent with selection, including high linkage disequilibrium, despite no significant reduction in recombination. Genes and functional enrichment of processes associated with differentiated regions may highlight continental differences in ocean navigation and parasite resistance. Our results provide insight into potential mechanisms underlying differences between continents, and evidence of near‐fixed and potentially adaptive trans‐Atlantic differences concurrent with a background of high genome‐wide differentiation supports subspecies designation in Atlantic salmon. 相似文献
10.
In this issue, Flaxman et al. ( 2014 ) report the results of sophisticated whole‐genome simulations of speciation with gene flow, enhancing our understanding of the process by building on previous single‐locus, multilocus and analytical works. Their findings provide us with new insights about how genomes can diverge and the importance of statistical and chromosomal linkage in facilitating reproductive isolation. The authors characterize the conditions under which, even with high gene flow and weak divergent selection, reproductive isolation between populations can occur due to the emergent stochastic process of genomewide congealing, where numerous statistically or physically linked loci of small effect allow selection to limit effective migration rates. The initial congealing event can occur within a broad range conditions, and once initiated, the self‐reinforcing process leads to rapid divergence and ultimately two reproductively isolated populations. Flaxman et al.'s ( 2014 ) work is a valuable contribution to our understanding of speciation with gene flow and in making a more predictive field of evolutionary genomics and speciation. 相似文献
11.
McNiven VT LeVasseur-Viens H Kanippayoor RL Laturney M Moehring AJ 《Molecular ecology》2011,20(24):5119-5122
A primary question in biology concerns the genetic basis of the evolution of novel traits, often in response to environmental changes, and how this can subsequently cause species isolation. This topic was the focus of the symposium on the Genetics of Speciation and Evolution at the annual meeting of the Canadian Society for Ecology and Evolution, held in Banff in May 2011. The presentations revealed some of the rapid advances being made in understanding the genetic basis of adaptation and speciation, as well as the elegant interplay between an organism's genetic complement and the environment that organism experiences. 相似文献
12.
Colour polymorphism is likely to be disadvantageous to some populations and species due to genetic architecture and morph interactions 下载免费PDF全文
Polymorphism describes two or more distinct, genetically determined, phenotypes that co‐occur in the same population, where the rarest morph is maintained at a frequency above the mutation rate (Ford 1945; Huxley 1955). In a recent opinion piece, we explored a new idea regarding the role of genetic architectures and morph interactions in colour polymorphisms and how this can negatively affect population performance (Bolton et al. 2015). In this issue of Molecular Ecology, Forsman (2016) thoroughly discusses the current evidence for polymorphisms enhancing population performance and critiques the validity of the definitions of polymorphism we use in our original paper. We respond by clarifying that the negative consequences of polymorphisms that we discussed are likely to be most pertinent in species that have a particular set of characteristics, such as strong sexual or social interactions between morphs and discrete genetic architectures. Although it was not our intention to redefine polymorphism, we do believe that there should be further discussion about refining or characterizing balanced polymorphisms with respect to the degree of morph sympatry, discreteness of traits and their underlying genetic architecture, and the types of selection that drive and maintain the variation. The latter describes whether polymorphism is primarily maintained by external factors such as predation pressure or internal factors such as interactions with members of the same species. The contribution of Forsman (2016) is useful to this discussion, and we hope that our exchange of opinions will inspire new empirical and theoretical ideas on the origin and maintenance of colour polymorphisms. 相似文献
13.
Unravelling the mechanisms underlying variation in life history traits is of fundamental importance for our understanding of adaptation by natural selection. While progress has been made in mapping fitness-related phenotypes to genotypes, mainly in a handful of model organisms, functional genomic studies of life history adaptations are still in their infancy. In particular, despite a few notable exceptions, the genomic basis of life history variation in natural populations remains poorly understood. This is especially true for the genetic underpinnings of life history phenotypes subject to diversifying selection driven by ecological dynamics in patchy environments--as opposed to adaptations involving strong directional selection owing to major environmental changes, such as latitudinal gradients, extreme climatic events or transitions from salt to freshwater. In this issue of Molecular Ecology,Wheat et al. (2011) now make a significant leap forward by applying the tools of functional genomics to dispersal-related life history variation in a butterfly metapopulation. Using a combination of microarrays, quantitative PCR and physiological measurements, the authors uncover several metabolic and endocrine factors that likely contribute to the observed life history phenotypes. By identifying molecular candidate mechanisms of fitness variation maintained by dispersal dynamics in a heterogeneous environment,they also begin to address fascinating interactions between the levels of physiology, ecology and evolution. 相似文献
14.
Unique evolutionary trajectories in repeated adaptation to hydrogen sulphide‐toxic habitats of a neotropical fish (Poecilia mexicana) 下载免费PDF全文
Markus Pfenninger Simit Patel Lenin Arias‐Rodriguez Barbara Feldmeyer Rüdiger Riesch Martin Plath 《Molecular ecology》2015,24(21):5446-5459
Replicated ecological gradients are prime systems to study processes of molecular evolution underlying ecological divergence. Here, we investigated the repeated adaptation of the neotropical fish Poecilia mexicana to habitats containing toxic hydrogen sulphide (H2S) and compared two population pairs of sulphide‐adapted and ancestral fish by sequencing population pools of >200 individuals (Pool‐Seq). We inferred the evolutionary processes shaping divergence and tested the hypothesis of increase of parallelism from SNPs to molecular pathways. Coalescence analyses showed that the divergence occurred in the face of substantial bidirectional gene flow. Population divergence involved many short, widely dispersed regions across the genome. Analyses of allele frequency spectra suggest that differentiation at most loci was driven by divergent selection, followed by a selection‐mediated reduction of gene flow. Reconstructing allelic state changes suggested that selection acted mainly upon de novo mutations in the sulphide‐adapted populations. Using a corrected Jaccard index to quantify parallel evolution, we found a negligible proportion of statistically significant parallel evolution of Jcorr = 0.0032 at the level of SNPs, divergent genome regions (Jcorr = 0.0061) and genes therein (Jcorr = 0.0091). At the level of metabolic pathways, the overlap was Jcorr = 0.2545, indicating increasing parallelism with increasing level of biological integration. The majority of pathways contained positively selected genes in both sulphide populations. Hence, adaptation to sulphidic habitats necessitated adjustments throughout the genome. The largely unique evolutionary trajectories may be explained by a high proportion of de novo mutations driving the divergence. Our findings favour Gould's view that evolution is often the unrepeatable result of stochastic events with highly contingent effects. 相似文献
15.
Combining experimental evolution with whole‐genome resequencing is a promising new strategy for investigating the dynamics of evolutionary change. Published studies that have resequenced laboratory‐selected populations of sexual organisms have typically focused on populations sampled at the end of an evolution experiment. These studies have attempted to associate particular alleles with phenotypic change and attempted to distinguish between different theoretical models of adaptation. However, neither the population used to initiate the experiment nor multiple time points sampled during the evolutionary trajectory are generally available for examination. In this issue of Molecular Ecology, Orozco‐terWengel et al. (2012) take a significant step forward by estimating genome‐wide allele frequencies at the start, 15 generations into and at the end of a 37‐generation Drosophila experimental evolution study. The authors identify regions of the genome that have responded to laboratory selection and describe the temporal dynamics of allele frequency change. They identify two common trajectories for putatively adaptive alleles: alleles either gradually increase in frequency throughout the entire 37 generations or alleles plateau at a new frequency by generation 15. The identification of complex trajectories of alleles under selection contributes to a growing body of literature suggesting that simple models of adaptation, whereby beneficial alleles arise and increase in frequency unimpeded until they become fixed, may not adequately describe short‐term response to selection. 相似文献
16.
Kathleen G. Ferris 《Molecular ecology》2016,25(22):5605-5607
Identifying the individual loci and mutations that underlie adaptation to extreme environments has long been a goal of evolutionary biology. However, finding the genes that underlie adaptive traits is difficult for several reasons. First, because many traits and genes evolve simultaneously as populations diverge, it is difficult to disentangle adaptation from neutral demographic processes. Second, finding the individual loci involved in any trait is challenging given the respective limitations of quantitative and population genetic methods. In this issue of Molecular Ecology, Hendrick et al. (2016) overcome these difficulties and determine the genetic basis of microgeographic adaptation between geothermal vent and nonthermal populations of Mimulus guttatus in Yellowstone National Park. The authors accomplish this by combining population and quantitative genetic techniques, a powerful, but labour‐intensive, strategy for identifying individual causative adaptive loci that few studies have used (Stinchcombe & Hoekstra 2008 ). In a previous common garden experiment (Lekberg et al. 2012), thermal M. guttatus populations were found to differ from their closely related nonthermal neighbours in various adaptive phenotypes including trichome density. Hendrick et al. (2016) combine quantitative trait loci (QTL) mapping, population genomic scans for selection and admixture mapping to identify a single genetic locus underlying differences in trichome density between thermal and nonthermal M. guttatus. The candidate gene, R2R3 MYB, is homologous to genes involved in trichome development across flowering plants. The major trichome QTL, Tr14, is also involved in trichome density differences in an independent M. guttatus population comparison (Holeski et al. 2010) making this an example of parallel genetic evolution. 相似文献
17.
K. M. Purcell A. Hitch S. Martin P. L. Klerks P. L. Leberg 《Journal of evolutionary biology》2012,25(12):2623-2632
Saltwater intrusion into estuaries creates stressful conditions for nektonic species. Previous studies have shown that Gambusia affinis populations with exposure to saline environments develop genetic adaptations for increased survival during salinity stress. Here, we evaluate the genetic structure of G. affinis populations, previously shown to have adaptations for increased salinity tolerance, and determine the impact of selection and gene flow on structure of these populations. We found that gene flow was higher between populations experiencing different salinity regimes within an estuary than between similar marsh types in different estuaries, suggesting the development of saline‐tolerant phenotypes due to local adaptation. There was limited evidence of genetic structure along a salinity gradient, and only some of the genetic variation among sites was correlated with salinity. Our results suggest limited structure, combined with selection to saltwater intrusion, results in phenotypic divergence in spite of a lack of physical barriers to gene flow. 相似文献
18.
19.
Arne B Gjuvsland Enikö Zörgö Jeevan KA Samy Simon Stenberg Ibrahim H Demirsoy Francisco Roque Ewa Maciaszczyk‐Dziubinska Magdalena Migocka Elisa Alonso‐Perez Martin Zackrisson Robert Wysocki Markus J Tamás Inge Jonassen Stig W Omholt Jonas Warringer 《Molecular systems biology》2016,12(12)
A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical–experimental framework for disclosing the presence of such adaptation‐speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation–accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic‐adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data‐driven individual‐based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation‐speeding mechanisms in general. 相似文献