首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the “Big Five” mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems.  相似文献   

2.
Theropod dinosaurs, an iconic clade of fossil species including Tyrannosaurus and Velociraptor, developed a great diversity of body size, skull form and feeding habits over their 160+ million year evolutionary history. Here, we utilize geometric morphometrics to study broad patterns in theropod skull shape variation and compare the distribution of taxa in cranial morphospace (form) to both phylogeny and quantitative metrics of biting behaviour (function). We find that theropod skulls primarily differ in relative anteroposterior length and snout depth and to a lesser extent in orbit size and depth of the cheek region, and oviraptorosaurs deviate most strongly from the "typical" and ancestral theropod morphologies. Noncarnivorous taxa generally fall out in distinct regions of morphospace and exhibit greater overall disparity than carnivorous taxa, whereas large-bodied carnivores independently converge on the same region of morphospace. The distribution of taxa in morphospace is strongly correlated with phylogeny but only weakly correlated with functional biting behaviour. These results imply that phylogeny, not biting function, was the major determinant of theropod skull shape.  相似文献   

3.
The Stegosauria represents an iconic group of ornithischian dinosaurs, with a fossil record spanning the Middle Jurassic to the Late Cretaceous. In this contribution I present the first detailed analysis of the relationship between disparity and diversity through the evolutionary history of the group. The analysis has been performed on a recently published cladistic dataset, allowing the separate study of the signals deriving from discrete characters and from continuous morphometric characters. Whereas the disparity as sum of variance is decoupled with respect to diversity, the sum of ranges provides a signal fairly consistent with the trend in the number of taxa. Both sub-data sets show that evolution of stegosaurs can be considered essentially as symmetrical, i.e. the maximum exploration of the possible morphospace takes place about half way through the history of the group, with subsequent significant decline until extinction in the Upper Cretaceous. An interesting result is a decoupling of the tempo and mode of evolution of the cranium and postcranium in stegosaurs. Specifically, the evolutionary radiation with maximum saturation of morphospace is anticipated in the cranial skeleton, with maximum peak in the Oxfordian; in contrast, the postcranium explores the largest number of morphotypes subsequently during the Kimmeridgian.  相似文献   

4.
The origin of birds from non-avian theropod dinosaurs is one of the greatest transitions in evolution. Shortly after diverging from other theropods in the Late Jurassic, Mesozoic birds diversified into two major clades—the Enantiornithes and Ornithuromorpha—acquiring many features previously considered unique to the crown group along the way. Here, we present a comparative phylogenetic study of the patterns and modes of Mesozoic bird skeletal morphology and limb proportions. Our results show that the major Mesozoic avian groups are distinctive in discrete character space, but constrained in a morphospace defined by limb proportions. The Enantiornithines, despite being the most speciose group of Mesozoic birds, are much less morphologically disparate than their sister clade, the Ornithuromorpha—the clade that gave rise to living birds, showing disparity and diversity were decoupled in avian history. This relatively low disparity suggests that diversification of enantiornithines was characterized in exhausting fine morphologies, whereas ornithuromorphs continuously explored a broader array of morphologies and ecological opportunities. We suggest this clade-specific evolutionary versatility contributed to their sole survival of the end-Cretaceous mass extinction.  相似文献   

5.
Crustaceans have been an important component of marine diversity and biomass since the earliest Phanerozoic. With a relatively well-documented fossil record, they provide an excellent subject for a continuous study of disparity (? bodyplan variety) from the Cambrian to the Recent. A data base of 135 morphological characters forms the basis for cladistic and morphospace studies at the ordinal and sub-ordinal level. Gross cladistic topology is: (Eumalacostraca + Hoplocarida vs Maxillopoda) vs Phyllopoda (paraphyletic). Each of these groups is of approximately equal disparity, and occupies a distinct region of the morphospace plot. A few problematical fossils (e.g. Waptia and Odaraia) fall close to the base of the tree. Comparison of the cladogram with stratigraphic range data indicates the location of probable ghost lineages, and randomization procedures provide a statistical test of the goodness of fit of a given set of stratigraphic ranges to a given tree topology. Disparity indices are calculated at series and stage intervals. Observed range data indicate that Cambrian disparity was approximately one third its present level. The Earliest Ordovician saw a marked decrease, with an increase and subsequent plateau through rest of the period. Increases through the Silurian and Devonian corresponded to the radiation of branchiopods, cephalocarids, and latterly the Eumalacostraca and Hoplocarida. By the end of the Carboniferous, observed disparity had reached over four fifths of Recent levels, and the remaining history of the group saw a gradual but slightly irregular increase up until the end of the Tertiary. Indices of disparity incorporating ghost lineages exhibit less marked peaks and troughs, with fewer perturbations overall. Cladistically-implied disparity in the Lower Cambrian is estimated at three quarters of that in the Recent. Rarefaction is used to compare actual levels of disparity at each time interval with the mean for a similar number of taxa selected randomly from the list of all realized bodyplans. Most intervals preserved a range of forms more disparate than the mean of random samples drawn from the pool of all the taxa considered. From the Triassic to the Recent this difference was intermittently significant. Once occupied, extremes of morphospace tend not to fall vacant again.  相似文献   

6.
《Annales de Paléontologie》2019,105(2):109-118
Cyrtocrinids (Cyrtocrinida) are fully sessile post-Palaeozoic crinoids (Crinoidea) of unusual morphology exhibiting complex diversity dynamics and evolutionary history. To date, however, no study has ever examined the macro-evolutionary patterns of body-size trends in these crinoids. A compilation of a body-size dataset for cyrtocrinid genera revealed a trend of increasing size throughout their evolutionary history. A maximum-likelihood approach showed that the observed trend is best characterized by a general random walk. Recorded body-size pattern is thus consistent with the Cope-Depéret's rule implying the existence of active, directional selective pressures towards larger body-sizes. The case provides a rare example of directional body-size trend in the fossil record.  相似文献   

7.
Insights into morphological diversification can be obtained from the ways the species of a clade occupy morphospace. Projecting a phylogeny into morphospace provides estimates of evolutionary trajectories as lineages diversified information that can be used to infer the dynamics of evolutionary processes that produced patterns of morphospace occupation. We present here a large-scale investigation into evolution of morphological variation in the skull of caecilian amphibians, a major clade of vertebrates. Because caecilians are limbless, predominantly fossorial animals, diversification of their skull has occurred within a framework imposed by the functional demands of head-first burrowing. We examined cranial shape in 141 species, over half of known species, using X-ray computed tomography and geometric morphometrics. Mapping an existing phylogeny into the cranial morphospace to estimate the history of morphological change (phylomorphospace), we find a striking pattern: most species occupy distinct clusters in cranial morphospace that closely correspond to the main caecilian clades, and each cluster is separated by unoccupied morphospace. The empty spaces in shape space are unlikely to be caused entirely by extinction or incomplete sampling. The main caecilian clades have different amounts of morphological disparity, but neither clade age nor number of species account for this variation. Cranial shape variation is clearly linked to phyletic divergence, but there is also homoplasy, which is attributed to extrinsic factors associated with head-first digging: features of caecilian crania that have been previously argued to correlate with differential microhabitat use and burrowing ability, such as subterminal and terminal mouths, degree of temporal fenestration (stegokrotaphy/zygokrotaphy), and eyes covered by bone, have evolved and many combinations occur in modern species. We find evidence of morphological convergence in cranial shape, among species that have eyes covered by bone, resulting in a narrow bullet-shaped head. These results reveal a complex history, including early expansion of morphospace and both divergent and convergent evolution resulting in the diversity we observe today.  相似文献   

8.
Disparity, or morphological diversity, is often quantified by evolutionary biologists investigating the macroevolutionary history of clades over geological timescales. Disparity is typically quantified using proxies for morphology, such as measurements, discrete anatomical characters, or geometric morphometrics. If different proxies produce differing results, then the accurate quantification of disparity in deep time may be problematic. However, despite this, few studies have attempted to examine disparity of a single clade using multiple morphological proxies. Here, as a case study for this question, we examine the disparity of the volant Mesozoic fossil reptile clade Pterosauria, an intensively studied group that achieved substantial morphological, ecological and taxonomic diversity during their 145+ million-year evolutionary history. We characterize broadscale patterns of cranial morphological disparity for pterosaurs for the first time using landmark-based geometric morphometrics and make comparisons to calculations of pterosaur disparity based on alternative metrics. Landmark-based disparity calculations suggest that monofenestratan pterosaurs were more diverse cranially than basal non-monofenestratan pterosaurs (at least when the aberrant anurognathids are excluded), and that peak cranial disparity may have occurred in the Early Cretaceous, relatively late in pterosaur evolution. Significantly, our cranial disparity results are broadly congruent with those based on whole skeleton discrete character and limb proportion data sets, indicating that these divergent approaches document a consistent pattern of pterosaur morphological evolution. Therefore, pterosaurs provide an exemplar case demonstrating that different proxies for morphological form can converge on the same disparity signal, which is encouraging because often only one such proxy is available for extinct clades represented by fossils. Furthermore, mapping phylogeny into cranial morphospace demonstrates that pterosaur cranial morphology is significantly correlated with, and potentially constrained by, phylogenetic relationships.  相似文献   

9.
Order Diplobathrida is a major clade of camerate crinoids spanning the Ordovician–Mississippian, yet phylogenetic relationships have only been inferred for Ordovician taxa. This has hampered efforts to construct a comprehensive tree of life for crinoids and develop a classification scheme that adequately reflects diplobathrid evolutionary history. Here, I apply maximum parsimony and Bayesian phylogenetic approaches to the fossil record of diplobathrids to infer the largest tree of fossil crinoids to date, with over 100 genera included. Recovered trees provide a framework for evaluating the current classification of diplobathrids. Notably, previous suborder divisions are not supported, and superfamily divisions will require significant modification. Although numerous revisions are required for families, most can be retained through reassignment of genera. In addition, recovered trees were used to produce phylogeny‐based estimates of diplobathrid lineage diversity. By accounting for ghost lineages, phylogeny‐based richness estimates offer greater insight into diversification and extinction dynamics than traditional taxonomy‐based approaches alone and provide a detailed summary of the ~150 million‐year evolutionary history of Diplobathrida. This study constitutes a major step toward producing a phylogeny of the Crinoidea and documenting crinoid diversity dynamics. In addition, it will serve as a framework for subsequent phylogeny‐based investigations of macroevolutionary questions.  相似文献   

10.
Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise‐AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade.  相似文献   

11.
A positive correlation between diversity and disparity/evolutionary rate is predicted by multiple evolutionary theories. However, recent empirical studies in various taxa do not always find such an association. Similarly, we find no correlation between these two levels of variation, based on cranial morphometric data and molecular phylogenetic data from 317 muroid rodent species and dipodoid outgroups, analyzed using three-dimensional geometric morphometrics. This disassociation was found using both phylogenetic and non-phylogenetic approaches, indicating that an increase in clade richness is not necessarily followed by an increase in morphological divergence and vice versa. Furthermore, the distribution of muroid families in morphospace is highly overlapping suggesting greater variation within than between clades. Taken together with the observation that families with the most distinctive cranial morphologies (nesomyids, dipodids, and spalacids) are the least diverse, indicates that evolution of new cranial morphologies may not play an important role in the diversification of muroid rodents.  相似文献   

12.
13.
Morphological variation (disparity) is almost invariably characterized by two non-mutually exclusive approaches: (1) quantitatively, through geometric morphometrics; and (2) in terms of discrete, ‘cladistic’, or categorical characters. Uncertainty over the comparability of these approaches diminishes the potential to obtain nomothetic insights into the evolution of morphological disparity and the few benchmarking studies conducted so far show contrasting results. Here, we apply both approaches to characterizing morphology in the stem-gnathostome clade Osteostraci in order to assess congruence between these alternative methods as well as to explore the evolutionary patterns of the group in terms of temporal disparity and the influence of phylogenetic relationships and habitat on morphospace occupation. Our results suggest that both approaches yield similar results in morphospace occupation and clustering, but also some differences indicating that these metrics may capture different aspects of morphology. Phylomorphospaces reveal convergence towards a generalized ‘horseshoe’-shaped cranial morphology and two strong trends involving major groups of osteostracans (benneviaspidids and thyestiids), which probably reflect adaptations to different lifestyles. Temporal patterns of disparity obtained from categorical and morphometric approaches appear congruent, however, disparity maxima occur at different times in the evolutionary history of the group. The results of our analyses indicate that categorical and continuous data sets may characterize different patterns of morphological disparity and that discrepancies could reflect preservational limitations of morphometric data and differences in the potential of each data type for characterizing more or less inclusive aspects of overall phenotype.  相似文献   

14.
The evolutionary radiation of dinosaurs in the Late Triassic and Early Jurassic was a pivotal event in the Earth's history but is poorly understood, as previous studies have focused on vague driving mechanisms and have not untangled different macroevolutionary components (origination, diversity, abundance and disparity). We calculate the morphological disparity (morphospace occupation) of dinosaurs throughout the Late Triassic and Early Jurassic and present new measures of taxonomic diversity. Crurotarsan archosaurs, the primary dinosaur 'competitors', were significantly more disparate than dinosaurs throughout the Triassic, but underwent a devastating extinction at the Triassic-Jurassic boundary. However, dinosaur disparity showed only a slight non-significant increase after this event, arguing against the hypothesis of ecological release-driven morphospace expansion in the Early Jurassic. Instead, the main jump in dinosaur disparity occurred between the Carnian and Norian stages of the Triassic. Conversely, dinosaur diversity shows a steady increase over this time, and measures of diversification and faunal abundance indicate that the Early Jurassic was a key episode in dinosaur evolution. Thus, different aspects of the dinosaur radiation (diversity, disparity and abundance) were decoupled, and the overall macroevolutionary pattern of the first 50Myr of dinosaur evolution is more complex than often considered.  相似文献   

15.
Understanding the relationship between taxonomic and morphological changes is important in identifying the reasons for accelerated morphological diversification early in the history of animal phyla. Here, a simple general model describing the joint dynamics of taxonomic diversity and morphological disparity is presented and applied to the data on the diversification of blastozoans. I show that the observed patterns of deceleration in clade diversification can be explicable in terms of the geometric structure of the morphospace and the effects of extinction and speciation on morphological disparity without invoking major declines in the size of morphological transitions or taxonomic turnover rates. The model allows testing of hypotheses about patterns of diversification and estimation of rates of morphological evolution. In the case of blastozoans, I find no evidence that major changes in evolutionary rates and mechanisms are responsible for the deceleration of morphological diversification seen during the period of this clade''s expansion. At the same time, there is evidence for a moderate decline in overall rates of morphological diversification concordant with a major change (from positive to negative values) in the clade''s growth rate.  相似文献   

16.
Understanding patterns of species richness requires knowledge of the individual roles species play in community structure. Here, I use gastropod shells as a source of information about both their ecological and their evolutionary functions in generating bathymetric gradients of diversity. Specifically, morphological disparity of shell architecture in deep-sea gastropods is evaluated over a depth gradient in the western North Atlantic by constructing an empirical morphospace based on an eigenshape analysis. Morphological disparity is quantified by calculating the centroid, total range, and dispersion of the morphospace at each station along the depth gradient. The results indicate that local faunas are drawn from a regional pool with the same variance but that average dissimilarity in forms reflects the number of species in the sample. The range of the morphospace at local scales is also less than at regional scales, resulting from the variability of the morphospace centroid over depth. Although the position of the morphospace changes with depth, morphological disparity remains unaffected. Despite the lack of bathymetric patterns in variance, patterns in nearest neighbor distance persist. The findings suggest the importance of interacting ecological and evolutionary processes at varying spatiotemporal scales for both morphological disparity and species richness.  相似文献   

17.
The disparity in species richness among groups of organisms is one of the most pervasive features of life on earth. A number of studies have addressed this pattern across higher taxa (e.g. 'beetles'), but we know much less about the generality and causal basis of the variation in diversity within evolutionary radiations at lower taxonomic scales. Here, we address the causes of variation in species richness among major lineages of Australia's most diverse vertebrate radiation, a clade of at least 232 species of scincid lizards. We use new mitochondrial and nuclear intron DNA sequences to test the extent of diversification rate variation in this group. We present an improved likelihood-based method for estimating per-lineage diversification rates from combined phylogenetic and taxonomic (species richness) data, and use the method in a hypothesis-testing framework to localize diversification rate shifts on phylogenetic trees. We soundly reject homogeneity of diversification rates among members of this radiation, and find evidence for a dramatic rate increase in the common ancestor of the genera Ctenotus and Lerista. Our results suggest that the evolution of traits associated with climate tolerance may have had a role in shaping patterns of diversity in this group.  相似文献   

18.
Cynodont therapsids diversified extensively after the Permo-Triassic mass extinction event, and gave rise to mammals in the Jurassic. We use an enlarged and revised dataset of discrete skeletal characters to build a new phylogeny for all main cynodont clades from the Late Permian to the Early Jurassic, and we analyse models of morphological diversification in the group. Basal taxa and epicynodonts are paraphyletic relative to eucynodonts, and the latter are divided into cynognathians and probainognathians, with tritylodonts and mammals forming sister groups. Disparity analyses reveal a heterogeneous distribution of cynodonts in a morphospace derived from cladistic characters. Pairwise morphological distances are weakly correlated with phylogenetic distances. Comparisons of disparity by groups and through time are non-significant, especially after the data are rarefied. A disparity peak occurs in the Early/Middle Triassic, after which period the mean disparity fluctuates little. Cynognathians were characterized by high evolutionary rates and high diversity early in their history, whereas probainognathian rates were low. Community structure may have been instrumental in imposing different rates on the two clades.  相似文献   

19.
Previous work has shown that the relative proportions of wing components (i.e., humerus, ulna, carpometacarpus) in birds are related to function and ecology, but these have rarely been investigated in a phylogenetic context. Waterbirds including “Pelecaniformes,” Ciconiiformes, Procellariiformes, Sphenisciformes, and Gaviiformes form a highly supported clade and developed a great diversity of wing forms and foraging ecologies. In this study, forelimb disparity in the waterbird clade was assessed in a phylogenetic context. Phylogenetic signal was assessed via Pagel's lambda, Blomberg's K, and permutation tests. We find that different waterbird clades are clearly separated based on forelimb component proportions, which are significantly correlated with phylogeny but not with flight style. Most of the traditional contents of “Pelecaniformes” (e.g., pelicans, cormorants, and boobies) cluster with Ciconiiformes (herons and storks) and occupy a reduced morphospace. These taxa are closely related phylogenetically but exhibit a wide range of ecologies and flight styles. Procellariiformes (e.g., petrels, albatross, and shearwaters) occupy a wide range of morphospace, characterized primarily by variation in the relative length of carpometacarpus and ulna. Gaviiformes (loons) surprisingly occupy a wing morphospace closest to diving petrels and penguins. Whether this result may reflect wing proportions plesiomorphic for the waterbird clade or a functional signal is unclear. A Bayesian approach detecting significant rate shifts across phylogeny recovered two such shifts. At the base of the two sister clades Sphenisciformes + Procellariiformes, a shift to an increase evolutionary rate of change is inferred for the ulna and carpometacarpus. Thus, changes in wing shape begin prior to the loss of flight in the wing‐propelled diving clade. Several shifts to slower rate of change are recovered within stem penguins.  相似文献   

20.
Xiphosurids are an archaic group of aquatic chelicerate arthropods, generally known by the colloquial misnomer of ‘horseshoe crabs’. Known from marine environments as far back as the early Ordovician, horseshoe crabs are generally considered ‘living fossils’ – descendants of a bradytelic lineage exhibiting little morphological or ecological variation throughout geological time. However, xiphosurids are known from freshwater sediments in the Palaeozoic and Mesozoic; furthermore, the contention that xiphosurids show little morphological variation has never been tested empirically. Attempts to test this are hampered by the lack of a modern phylogenetic framework with which to explore different evolutionary scenarios. Here, I present a phylogenetic analysis of Xiphosurida and explore patterns of morphospace and environmental occupation of the group throughout the Phanerozoic. Xiphosurids are shown to have invaded non‐marine environments independently at least five times throughout their evolutionary history, twice resulting in the radiation of major clades – bellinurines and austrolimulids – that occupied novel regions of morphospace. These clades show a convergent ecological pattern of differentiation, speciation and subsequent extinction. Horseshoe crabs are shown to have a more dynamic and complex evolutionary history than previously supposed, with the extant species representing only a fraction of the group's past ecological and morphological diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号