首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local adaptation patterns have been found in many plants and animals, highlighting the genetic heterogeneity of species along their range of distribution. In the next decades, global warming is predicted to induce a change in the selective pressures that drive this adaptive variation, forcing a reshuffling of the underlying adaptive allele distributions. For species with low dispersion capacity and long generation time such as trees, the rapidity of the change could impede the migration of beneficial alleles and lower their capacity to track the changing environment. Identifying the main selective pressures driving the adaptive genetic variation is thus necessary when investigating species capacity to respond to global warming. In this study, we investigate the adaptive landscape of Fagus sylvatica along a gradient of populations in the French Alps. Using a double‐digest restriction‐site‐associated DNA (ddRAD) sequencing approach, we identified 7,000 SNPs from 570 individuals across 36 different sites. A redundancy analysis (RDA)‐derived method allowed us to identify several SNPs that were strongly associated with climatic gradients; moreover, we defined the primary selective gradients along the natural populations of F. sylvatica in the Alps. Strong effects of elevation and humidity, which contrast north‐western and south‐eastern site, were found and were believed to be important drivers of genetic adaptation. Finally, simulations of future genetic landscapes that used these findings allowed identifying populations at risk for F. sylvatica in the Alps, which could be helpful for future management plans.  相似文献   

2.
3.
Landscape genetics, which explicitly quantifies landscape effects on gene flow and adaptation, has largely focused on macroorganisms, with little attention given to microorganisms. This is despite overwhelming evidence that microorganisms exhibit spatial genetic structuring in relation to environmental variables. The increasing accessibility of genomic data has opened up the opportunity for landscape genetics to embrace the world of microorganisms, which may be thought of as ‘the invisible regulators’ of the macroecological world. Recent developments in bioinformatics and increased data accessibility have accelerated our ability to identify microbial taxa and characterize their genetic diversity. However, the influence of the landscape matrix and dynamic environmental factors on microorganism genetic dispersal and adaptation has been little explored. Also, because many microorganisms coinhabit or codisperse with macroorganisms, landscape genomic approaches may improve insights into how micro‐ and macroorganisms reciprocally interact to create spatial genetic structure. Conducting landscape genetic analyses on microorganisms requires that we accommodate shifts in spatial and temporal scales, presenting new conceptual and methodological challenges not yet explored in ‘macro’‐landscape genetics. We argue that there is much value to be gained for microbial ecologists from embracing landscape genetic approaches. We provide a case for integrating landscape genetic methods into microecological studies and discuss specific considerations associated with the novel challenges this brings. We anticipate that microorganism landscape genetic studies will provide new insights into both micro‐ and macroecological processes and expand our knowledge of species’ distributions, adaptive mechanisms and species’ interactions in changing environments.  相似文献   

4.
We used landscape genetics and statistical models to test how landscape features influence connectivity or create barriers to dispersal for a mountain riparian tree species, Euptelea pleiospermum. Young leaves from 1078 individuals belonging to 36 populations at elevations of 900–2000 m along upper reaches of four rivers were genotyped using eight nuclear microsatellite markers. We found no evidence for the unidirectional dispersal hypothesis in E. pleiospermum within each river. The linear dispersal pattern along each river valley is mostly consistent with the “classical metapopulaton” model. Mountain ridges separating rivers were genetic barriers for this wind-pollinated tree species with anemochorous seeds, whereas river valleys provided important corridors for dispersal. Gene flow among populations along elevational gradients within each river prevails over gene flow among populations at similar elevations but from different rivers. This pattern of gene flow is likely to promote elevational range shifts of plant populations and to hinder local adaptation along elevational gradients. This study provides a paradigm to determine which of the two strategies (migration or adaptation) will be adopted by mountain riparian plants under climate warming.  相似文献   

5.
6.
Vignieri SN 《Molecular ecology》2005,14(7):1925-1937
In species affiliated with heterogeneous habitat, we expect gene flow to be restricted due to constraints placed on individual movement by habitat boundaries. This is likely to impact both individual dispersal and connectivity between populations. In this study, a GIS-based landscape genetics approach was used, in combination with fine-scale spatial autocorrelation analysis and the estimation of recent intersubpopulation migration rates, to infer patterns of dispersal and migration in the riparian-affiliated Pacific jumping mouse (Zapus trinotatus). A total of 228 individuals were sampled from nine subpopulations across a system of three rivers and genotyped at eight microsatellite loci. Significant spatial autocorrelation among individuals revealed a pattern of fine-scale spatial genetic structure indicative of limited dispersal. Geographical distances between pairwise subpopulations were defined following four criteria: (i) Euclidean distance, and three landscape-specific distances, (ii) river distance (distance travelled along the river only), (iii) overland distance (similar to Euclidean, but includes elevation), and (iv) habitat-path distance (a least-cost path distance that models movement along habitat pathways). Pairwise Mantel tests were used to test for a correlation between genetic distance and each of the geographical distances. Significant correlations were found between genetic distance and both the overland and habitat-path distances; however, the correlation with habitat-path distance was stronger. Lastly, estimates of recent migration rates revealed that migration occurs not only within drainages but also across large topographic barriers. These results suggest that patterns of dispersal and migration in Pacific jumping mice are largely determined by habitat connectivity.  相似文献   

7.
8.
  • Genetic differences among freshwater fish populations are dependent on life‐history characteristics of the species, including the range of adult dispersal and the extent of homing to natal breeding grounds. However, the effects of variation in such characteristics on population genetic connectivity are rarely studied comparatively among closely related species.
  • We studied population genetic structure within three congeneric cyprinid species from the Lake Malawi catchment that differ substantially in life‐history traits and conservation status, using a combination of microsatellite and mitochondrial DNA markers. Mpasa (Opsaridium microlepis) is a large (70 cm total length) migratory species that spawns in rivers, but as an adult is exclusively known from the main lake body. Sanjika (Opsaridium microcephalum), is a medium size (30 cm total length) species that exists in lake breeding, river‐lake migratory and apparently landlocked populations. Dwarf sanjika (Opsaridium tweddleorum) is a small non‐migratory species (15 cm total length) that persists in small tributaries surrounding the main lake and adjoining rivers.
  • The results revealed striking differences among the three species in spatial genetic structuring. The river‐lake migratory mpasa showed only weak yet significant population genetic structure within the main Lake Malawi catchment, suggesting that there is no strong natal homing. The habitat‐generalist sanjika showed only weak spatial genetic differentiation at microsatellite loci within the Lake Malawi catchment, but moderate structure in mitochondrial DNA, potentially reflecting male‐biased dispersal. The river‐restricted dwarf sanjika showed strong genetic structure in both microsatellite and mitochondrial DNA, suggesting strictly limited dispersal at both adult and juvenile stages.
  • We conclude that contrasting migration life histories have resulted in dramatically different patterns of population genetic structure among these congeneric species. The observed patterns demonstrate how divergent life‐history evolution may strongly influence broader patterns of population genetic connectivity in freshwater fish, with consequences for management and conservation. Specifically the results suggesting gene flow among Lake Malawi populations of mpasa, an IUCN red‐listed ‘Endangered’ species endemic to the lake catchment, imply that conservation initiatives operating at both local and catchment scales are needed to reverse local population decline.
  相似文献   

9.
Knowledge of dispersal in a species, both its quantity and the factors influencing it, are crucial for our understanding of ecology and evolution, and for species conservation. Here we quantified and formally assessed the potential contribution of extrinsic factors on individual dispersal in the threatened Tasmanian population of wedge‐tailed eagle Aquila audax. As successful breeding by these individuals appears strongly related to habitat, we tested the effect of landscape around sampling sites on genetic diversity and spatial genetic variation, as these are influenced by patterns of dispersal. Similarly, we also tested whether habitat intervening sampling sites could explain spatial genetic variation. Twenty microsatellites were scored, but only a small proportion of spatial genetic variation (4.6%) could be explained by extrinsic factors, namely habitat suitability and elevation between sites. However, significant clinal genetic variation was evident across Tasmania, which we explain by intrinsic factors, likely high natal philopatry and occasional long‐distance dispersal. This study demonstrates that spatial genetic variation can be detected in highly vagile species at spatial scales that are small relative to putative dispersal ability, although here there was no substantial relationship with landscape factors tested.  相似文献   

10.
Dispersal is a key demographic process, ultimately responsible for genetic connectivity among populations. Despite its importance, quantifying dispersal within and between populations has proven difficult for many taxa. Even in passerines, which are among the most intensely studied, individual movement and its relation to gene flow remains poorly understood. In this study we used two parallel genetic approaches to quantify natal dispersal distances in a Neotropical migratory passerine, the black-capped vireo. First, we employed a strategy of sampling evenly across the landscape coupled with parentage assignment to map the genealogical relationships of individuals across the landscape, and estimate dispersal distances; next, we calculated Wright’s neighborhood size to estimate gene dispersal distances. We found that a high percentage of captured individuals were assigned at short distances within the natal population, and males were assigned to the natal population more often than females, confirming sex-biased dispersal. Parentage-based dispersal estimates averaged 2400m, whereas gene dispersal estimates indicated dispersal distances ranging from 1600–4200 m. Our study was successful in quantifying natal dispersal distances, linking individual movement to gene dispersal distances, while also providing a detailed look into the dispersal biology of Neotropical passerines. The high-resolution information was obtained with much reduced effort (sampling only 20% of breeding population) compared to mark-resight approaches, demonstrating the potential applicability of parentage-based approaches for quantifying dispersal in other vagile passerine species.  相似文献   

11.
Understanding factors that influence population connectivity and the spatial distribution of genetic variation is a major goal in molecular ecology. Improvements in the availability of high-resolution geographic data have made it increasingly possible to quantify the effects of landscape features on dispersal and genetic structure. However, most studies examining such landscape effects have been conducted at very fine (e.g. landscape genetics) or broad (e.g. phylogeography) spatial scales. Thus, the extent to which processes operating at fine spatial scales are linked to patterns at larger scales remains unclear. Here, we test whether factors impacting wood frog dispersal at fine spatial scales are correlated with genetic structure at regional scales. Using recently developed methods borrowed from electrical circuit theory, we generated landscape resistance matrices among wood frog populations in eastern North America based on slope, a wetness index, land cover and absolute barriers to wood frog dispersal. We then determined whether these matrices are correlated with genetic structure based on six microsatellite markers and whether such correlations outperform a landscape-free model of isolation by resistance. We observed significant genetic structure at regional spatial scales. However, topography and landscape variables associated with the intervening habitat between sites provide little explanation for patterns of genetic structure. Instead, absolute dispersal barriers appear to be the best predictor of regional genetic structure in this species. Our results suggest that landscape variables that influence dispersal, microhabitat selection and population structure at fine spatial scales do not necessarily explain patterns of genetic structure at broader scales.  相似文献   

12.
Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine‐scale models to evaluate environmental heterogeneity may help detecting adaptation to micro‐habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata. The two gene pools identified, experiencing limited gene flow along a 1‐km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine‐scale topography. Using a large panel of DEM‐derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high‐resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.  相似文献   

13.
Dispersal plays a fundamental role in the evolution and persistence of species, and especially for species inhabiting extreme, ephemeral and highly fragmented habitats as hydrothermal vents. The Mid-Atlantic Ridge endemic shrimp species Rimicaris exoculata was studied using microsatellite markers to infer connectivity along the 7100-Km range encompassing the sampled sites. Astonishingly, no genetic differentiation was found between individuals from the different geographic origins, supporting a scenario of widespread large-scale dispersal despite the habitat distance and fragmentation. We hypothesize that delayed metamorphosis associated to temperature differences or even active directed migration dependent on physical and/or chemical stimuli could explain these results and warrant further studies on adaptation and dispersal mechanisms.  相似文献   

14.
This synthesis focuses on the estuarine and ocean ecology of Atlantic salmon (Salmo salar) and steelhead (Oncorhynchus mykiss) across their southern ranges in North America. General life history and ecology share many common traits including iteroparity, duration of freshwater (0–3 years) and marine (2–5 years) rearing, ocean emigration at relatively large sizes and strong surface orientation compared to other salmonids. Despite parallels in life history and anthropogenic pressures, several differences emerged for these species. First, steelhead have greater life history diversity and a broader geographic distribution. Generally, estuary habitats serve as short-term migration corridors for both species. However, some steelhead populations used lagoon habitat in south-coast watersheds. While both species are epipelagic, Atlantic salmon exhibit more vertical migration. Atlantic salmon tend to follow migratory highways—relatively narrow bands along the coastal shelf, then crossing the Atlantic to feed inshore and in fjords of West Greenland. Conversely, steelhead exit the coastal shelf quickly, dispersing across the Pacific, and rarely use coastal environments. Despite inhabiting rivers in warm dry Mediterranean climates, the extended range and stability of southern steelhead distribution is likely buffered by cool upwelled waters of the California Current. Whereas Atlantic salmon populations are restricted by warmer Northwest Atlantic circulation patterns lacking cool upwelling with greater susceptibility to warming associated with climate change. Determining the rate of marine habitat changes in the Atlantic and Pacific Oceans is important to the conservation of these species, including subtleties of temporal and spatial habitat use, and adaptability to ocean ecosystems under climate change.  相似文献   

15.
Birds employ numerous strategies to cope with seasonal fluctuations in high-quality habitat availability. Long distance migration is a common tactic; however, partial migration is especially common among broadly distributed species. Under partial migration systems, a portion of a species migrates, whereas the remainder inhabits breeding grounds year round. In this study, we identified effects of migratory behavior variation on genetic structure and diversity of American Kestrels (Falco sparverius), a widespread partial migrant in North America. American Kestrels generally migrate; however, a resident group inhabits the southeastern United States year round. The southeastern group is designated as a separate subspecies (F. s. paulus) from the migratory group (F. s. sparverius). Using mitochondrial DNA and microsatellites from 183 and 211 individuals, respectively, we illustrate that genetic structure is stronger among nonmigratory populations, with differentiation measures ranging from 0.060 to 0.189 depending on genetic marker and analysis approach. In contrast, measures from western North American populations ranged from 0 to 0.032. These findings suggest that seasonal migratory behavior is also associated with natal and breeding dispersal tendencies. We likewise detected significantly lower genetic diversity within nonmigratory populations, reflecting the greater influence of genetic drift in small populations. We identified the signal of population expansion among nonmigratory populations, consistent with the recent establishment of higher latitude breeding locations following Pleistocene glacial retreat. Differentiation of F. s. paulus and F. s. sparverius reflected subtle differences in allele frequencies. Because migratory behavior can evolve quickly, our analyses suggest recent origins of migratory American Kestrel populations in North America.  相似文献   

16.
Range expansions can result in founder effects, increasing genetic differentiation between expanding populations and reducing genetic diversity along the expansion front. However, few studies have addressed these effects in long-distance migratory species, for which high dispersal ability might counter the effects of genetic drift. Monarchs (Danaus plexippus) are best known for undertaking a long-distance annual migration in North America, but have also dispersed around the world to form populations that do not migrate or travel only short distances. Here, we used microsatellite markers to assess genetic differentiation among 18 monarch populations and to determine worldwide colonization routes. Our results indicate that North American monarch populations connected by land show limited differentiation, probably because of the monarch''s ability to migrate long distances. Conversely, we found high genetic differentiation between populations separated by large bodies of water. Moreover, we show evidence for serial founder effects across the Pacific, suggesting stepwise dispersal from a North American origin. These findings demonstrate that genetic drift played a major role in shaping allele frequencies and created genetic differentiation among newly formed populations. Thus, range expansion can give rise to genetic differentiation and declines in genetic diversity, even in highly mobile species.  相似文献   

17.
Landscape genetics aims to assess the effect of the landscape on intraspecific genetic structure. To quantify interdeme landscape structure, landscape genetics primarily uses landscape resistance surfaces (RSs) and least-cost paths or straight-line transects. However, both approaches have drawbacks. Parameterization of RSs is a subjective process, and least-cost paths represent a single migration route. A transect-based approach might oversimplify migration patterns by assuming rectilinear migration. To overcome these limitations, we combined these two methods in a new landscape genetic approach: least-cost transect analysis (LCTA). Habitat-matrix RSs were used to create least-cost paths, which were subsequently buffered to form transects in which the abundance of several landscape elements was quantified. To maintain objectivity, this analysis was repeated so that each landscape element was in turn regarded as migration habitat. The relationship between explanatory variables and genetic distances was then assessed following a mixed modelling approach to account for the nonindependence of values in distance matrices. Subsequently, the best fitting model was selected using the statistic. We applied LCTA and the mixed modelling approach to an empirical genetic dataset on the endangered damselfly, Coenagrion mercuriale. We compared the results to those obtained from traditional least-cost, effective and resistance distance analysis. We showed that LCTA is an objective approach that identifies both the most probable migration habitat and landscape elements that either inhibit or facilitate gene flow. Although we believe the statistical approach to be an improvement for the analysis of distance matrices in landscape genetics, more stringent testing is needed.  相似文献   

18.
植物景观遗传学研究进展   总被引:2,自引:0,他引:2  
宋有涛  孙子程  朱京海 《生态学报》2017,37(22):7410-7417
植物景观遗传学是新兴的景观遗传学交叉学科的一个重要研究方向。目前植物景观遗传学的研究虽落后于动物,但其在生物多样性保护方面具有的巨大潜力不可忽视。从景观特征对遗传结构、环境因素对适应性遗传变异影响两个方面,系统综述了近十年来国际上植物景观遗传学的研究焦点和研究进展,比较了植物景观遗传学与动物景观遗传学研究在研究设计和研究方法上的异同,并基于将来植物景观遗传学由对空间遗传结构的描述发展为对景观遗传效应的量化分析及预测的发展框架,具体针对目前景观特征与遗传结构研究设计的系统性差、遗传结构与景观格局在时间上的误配、适应性位点与环境变量的模糊匹配、中性遗传变异与适应性遗传变异研究的分隔、景观与遗传关系分析方法的局限等五个方面提出了研究对策。  相似文献   

19.
To be effective, management programmes geared towards halting or reversing the spread of invasive species must focus on defined and defensible areas. This requires knowledge of the dispersal of non-native species targeted for control to better understand invasion and recolonisation scenarios. We investigated the genetic structure of invasive American mink ( Neovison vison ) in Scotland, and incorporated landscape genetic approaches to examine resultant patterns in relation to geographical features that may influence dispersal. Populations of mink sampled from 10 sites in two regions (Argyll and Northeast Scotland) show a distinct genetic structure. First, the majority of pairwise population comparisons yielded F ST values that were significantly greater than zero. Second, amova revealed that most of the genetic variance was attributable to differences among regions. Assignment tests placed 89 or more of individuals into their sampled region. Bayesian clustering methods grouped samples into two clusters according to their region of origin. Wombling approach identified the Cairngorms Mountains as a major impediment to gene flow between the regions. Mantel pairwise correlations between genetic and geographical distances estimated as least-cost distance assuming a linear increase in the cost of movement with increasing elevation were higher than Euclidean distances or distance along waterways. Spatial autocorrelation analyses revealed stronger spatial structuring for females than for males. These results suggest that gene flow by American mink is restricted by landscape features (mountain ranges) and that eradication attempt should in the first instance break down the connectivity between management units separated by mountains.  相似文献   

20.
Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping‐stone oceanographic transport and habitat continuity, using as model an ecosystem‐structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping‐stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life‐history traits. Our results highlight the importance of spatially explicit modelling of stepping‐stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号