首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of phthalate esters on chlorophyll a2 fluorescencein radish plants (Raphanus sativus L. cv. Cherry Belle) wereexamined Fluorescence yield was increased in those plants exposedto an aerial concentration of 120 ng dm–3 dibutyl phthaiatc(DBP) at a rate of 3.0 dm3 min–1 for 13 d. Comparisonof fluorescence enhancement ratios and Fred/Fox, suggests thatDBP inhibits photosynthesis in radish plants at a site afterQA. Both DBP and diisobutyl phthalate (DIBP) strongly inhibiteduncoupled (PS2+PS1) electron transport rates in thylakoids isolatedfrom spinach. At a chlorophyll concentration of 10 µgcm–3 the concentrations of DBP and DIBP exhibiting 50%inhibition were 44 mmol m–3 and 42 mmol m–3 respectively.Basal electron transport rates were also inhibited, with 87mmol m–3 of DBP or DIBP producing 50% inhibition. Measurementof photosystcm 1 activity suggested that the main site of actionof these phthalates was localized at a site near the reducingside of photosystem 2. Key words: Phthalate, plasticiser, chlorophyll, fluorescence, photosynthesis, inhibition  相似文献   

2.
Knight, S. L. and Mitchell, C. A. 1988. Effects of CO2 and photosyntheticphoton flux on yield, gas exchange and growth rate of Lactucasativa L. ‘Waldmann’s Green'.—J. exp. Bot.39: 317–328. Enrichment of CO2 to 46 mmol m–3 (1 000 mm3 dm–3)at a moderate photosynthetic photon flux (PPF) of 450 µmolm–2 s–1 stimulated fresh and dry weight gain oflettuce leaves 39% to 75% relative to plants at 16 mmol m–3CO2 (350 mm3 dm–3). Relative growth rate (RGR) was stimulatedonly during the first several days of exponential growth. ElevatingCO2 above 46 mmol m–3 at moderate PPF had no further benefit.However, high PPF of 880–900 µmol m–2 s–1gave further, substantial increases in growth, RGR, net assimilationrate (NAR) and photosynthetic rate (Pn), but a decrease in leafarea ratio (LAR), at 46 or 69 mmol m–3 (1000 or 1500 mm3dm–3) CO2, the differences being greater at the higherCO2 level. Enrichment of CO2 to a supraoptimal level of 92 mmolm–3 (2000 mm3 dm–3) at high PPF increased leaf areaand LAR, decreased specific leaf weight, NAR and Pn and hadno effect on leaf, stem and root dry weight or RGR relativeto plants grown at 69 mmol m–3 CO2 after 8 d of treatment.The results of the study indicate that leaf lettuce growth ismost responsive to a combination of high PPF and CO2 enrichmentto 69 mmol m–3 for several days at the onset of exponentialgrowth, after which optimizing resources might be conserved. Key words: Photosynthesis, relative growth rate, CO2 enrichment  相似文献   

3.
Photosynthetic rates of outdoor-grown soybean (Glycine max L.Merr. cv. Bragg) canopies increased with increasing CO2 concentrationduring growth, before and after canopy closure (complete lightinterception), when measured over a wide range of solar irradiancevalues. Total canopy leaf area was greater as the CO2 concentrationduring growth was increased from 160 to 990 mm3 dm–3.Photosynthetic rates of canopies grown at 330 and 660 mm3 CO2dm–3 were similar when measured at the same CO2 concentrationsand high irradiance. There was no difference in ribulose bisphosphatecarboxylase/oxygenase (rubisco) activity or ribulose 1,5-bisphosphate(RuBP) concentration between plants grown at the two CO2 concentrations.However, photosynthetic rates averaged 87% greater for the canopiesgrown and measured at 660 mm3 CO2 dm–3. A 10°C differencein air temperature during growth resulted in only a 4°Cleaf temperature difference, which was insufficient to changethe photosynthetic rate or rubisco activity in canopies grownand measured at either 330 or 660 mm3 CO2 dm–3. RuBP concentrationsdecreased as air temperature during growth was increased atboth CO2 concentrations. These data indicate that the increasedphotosynthetic rates of soybean canopies at elevated CO2 aredue to several factors, including: more rapid development ofthe leaf area index; a reduction in substrate CO2 limitation;and no downward acclimation in photosynthetic capacity, as occurin some other species. Key words: CO2 concentration, soybean, canopy photosynthesis  相似文献   

4.
Geophylly is the phenomenon, exhibited by certain plants, ofgrowing with their leaves tightly appressed to the soil surface.The plants concerned usually produce only a few broad leavesat a given time Ledebouria ovatifolia (Bak.) Jess., is sucha plant and is a bulbous member of the Liliaceae growing onopen spots in the grassveld of the summer rainfall area of SouthAfrica- The spectral optical properties of the leaves, the temperaturesof the leaves and the soil, transpiration rate, rate of CO2-gasexchange and microclimatic conditions were measured on a plantin its natural habitat and the energy budget was calculated.The deciduous amphistomatic leaves absorb 71% of the incidentglobal radiation. As a result of the high energy input, theleaf temperature at noon is 10.1 K higher than the air temperaturebut still 7-5 K lower than the surface temperature of the baresoil. Important in the energy budget of L. ovatifolia is thehigh energy loss by transpiration (1.73 g dm–2 h–1)and the convective cooling by transient free-forced convection.CO2 uptake (18.2 mg dm–2 h–1) occurs only at theupper leaf surface because insufficient light penetrates themesophyll to produce net photosynthesis near the lower leafsurface.  相似文献   

5.
GLOVER  J. 《Annals of botany》1974,38(4):909-920
The rates of apparent photosynthesis of whole sugarcane plantswhich do not suffer from water stress are linearly related tothe rates of solar radiation on a horizontal surface up to intensitiesof at least 840 Wm–2. This holds good over a wide rangeof leaf areas from 200 dm2 for young plants to 700 dm2 for olderplants, and for temperatures in the range 14–35 °C. The amount of CO2 assimilated per unit area of ground coveredby the leaves, at any intensity of insolation up to 840 Wm–2,is approximately constant for plants between 3 and 18 monthsold. Thus the assimilation of CO2 by a crop of sugarcane is linearlyrelated to the intensity of the insolation and the area of groundcovered by green leaves. Very young plants (3 months old) consisting mainly of numerousyoung leaves have apparent photosynthetic rates per unit leafarea which are some 1.5 times those of older plants (7 to 8or 17 to 18 months old) which carry fewer but proportionatelymore mature leaves. Water stress, caused either by under- or over-watering, reducesapparent photosynthetic rates below normal levels. The extentand duration of the reduction depends on the degree of stress. The onset of and recovery from such stresses are illustrated.  相似文献   

6.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

7.
The Uptake of Gaseous Ammonia by the Leaves of Italian Ryegrass   总被引:5,自引:0,他引:5  
Lockyer, D. R. and Whitehead, D. C. 1986. The uptake of gaseousammonia by the leaves of Italian ryegrass.—J. exp. Bot.37: 919–927. Plants of Italian ryegrass (Lolium multiflorum Lam.) grown insoil with two rates of added 15N-labelled nitrate were exposed,in chambers, for 40 d to NH3 in the air at concentrations of16, 118 and 520 µg m–3. At the highest concentrationof NH3, this source provided 47?3% of the total nitrogen inplants grown with the lower rate of nitrate addition (100mgN kg–1 dry soil) and 35?2% with the higher rate (200mgN kg–1 dry soil) At the intermediate concentration ofNH3, the contributions to total plant N were 19?6% and 10?8%,respectively, at low and high nitrate while, at the lowest concentrationof NH3, they were 5?1% and 32%. Most of the N derived from theNH3 remained in the leaves, but some was transported to theroots. The amount of N derived from the NH3 that was presentin the leaves was not reduced by washing the leaves in waterat pH 5?0 before harvesting, indicating that the N was assimilatedby the plant and not adsorbed superficially. Rates of uptakeof NH3 per unit leaf area ranged from 1?7 µg dm–2h–1 at a concentration of 16 µg m–3 to 29?0µg dm–2 h–1 at a concentration of 520 µgm–3 and with the lower rate of nitrate addition. Increasingthe supply of nitrate to the roots slightly reduced the rateof uptake of NH3 per unit leaf area. Uptake of N from the higherrate of nitrate was reduced at the highest concentration ofNH3 in the air. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

8.
The Carbon Economy of Rubus chamaemorus L. II. Respiration   总被引:1,自引:0,他引:1  
MARKS  T. C. 《Annals of botany》1978,42(1):181-190
Respiratory activity and seasonal changes in carbohydrate contentof the storage organs of Rubus chamaemorus L. have been investigated.Leaf dark respiration rate increases in a non-linear mannerfrom 0·7 mg CO2 evolved dm–2 h–1 at 0 °Cto 4·6 rng CO2 evolved dm–2 hh–1 at 30 °C.Root and rhizome respiration rates increase from 1 µ1O2 uptake g–1 fresh weight h–1 at 0.7 ° C to10 µ10, uptake g–1 f. wt h–1 at 20 °C.Rhizome carbohydrate reserves decline from a September peakof 33 per cent alcohol insoluble d. wt to 16 per cent in May. The circumpolar distribution of R. chamaemorus is discussedin relation to the evidence presented here and in the precedingpaper of the series.  相似文献   

9.
We grew water hyacinth [Eichhornia crassipes (Mart.) Solms]for 60 days in a greenhouse under natural light and in a controlledenvironment room at 31/25?C day/night temperatures and 90, 320and 750/µEm–2sec–1. We then determined maximumphotosynthetic rates in 21% and 1% oxygen, stomatal diffusionresistances, contents of chlorophyll and soluble protein, andthe size and density of the photosynthetic units (PSU) in representativeleaves from the four treatments. In air containing 21% oxygen,maximum photosynthetic rates were 14, 27 and 29 mg CO2 dm–2hr–1for plants grown in artificial light at 90, 320 and 750µEm–2sec–1,respectively. Plants grown in natural light (maximum of 2000µEm–2sec–1) had maximum photosynthetic ratesof 34 mg CO2 dm–2hr–1. In all treatments, photosyntheticrates in 1% oxygen were about 50% greater than rates in normalair, indicating the presence of photorespiration in water hyacinth.There was no apparent relationship between maximum photosyntheticrate per unit leaf area and stomatal conductance, chlorophyllcontent per unit area, or PSU density per unit area. However,the higher maximum photosynthetic rates were associated withgreater mesophyll conductances, specific leaf weights and proteincontents per unit area. When plants grown at 90µEm–2sec–1for 120 days were transferred to 750µEm–2sec–1for 5 days, only young leaves that were just beginning to expandat the time of transfer exhibited adaptation to the higher irradiance.The 40% increase in light-saturated photosynthetic rate in theseyoung leaves was associated with increases in mesophyll conductance,soluble protein content per unit area, and specific leaf weight. 1 Mississippi Agricultural and Forestry Experiment Station cooperating. (Received July 19, 1978; )  相似文献   

10.
A study was made of the incorporation of 14C by intact leavesof Coffea arabica (cultivars Mundo Novo, Catuai, 1130–13,and H 6586–2) and Coffea canephora (cultivar Guarini)supplied with gas mixtures containing 14CO2 under controlledconditions. Samples of the leaves were combusted and the 14Cin the CO2 produced measured using a liquid scintillation counter.The results were used to estimate photosynthetic rates. Theeffects of changing the partial pressures of O2 and CO2 on thephotosynthetic rate were studied and estimates made of the CO2compensation point and photorespiration. The data obtained show differences between the mean net photosyntheticrates of the C. arabica cultivars (6·14 mg CO2 dm–2h–1) and the mean rate for the C. canephora cultivar (3·96mg CO2 dm–2 h–1). The cultivar of the latter speciesphotorespired more rapidly than the cultivar Catuai of C. arabica.Rates of photosynthesis in coffee measured using the 14CO2 methodwere similar to rates obtained by others using an infrared gasanalyser. The 14CO2 method proved to be reliable for photosyntheticmeasurements and the apparatus is suitable for use in fieldconditions.  相似文献   

11.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

12.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

13.
An Analysis of Plant Growth and its Control in Arctic Environments   总被引:8,自引:1,他引:7  
WILSON  J. WARREN 《Annals of botany》1966,30(3):383-402
The relative growth-rate of plants grown on a vermiculite culturemedium in an arctic climate during the growing season was abouta quarter of that of comparable plants on the same medium ina temperate climate. In both climates the relative growth-ratewas lower on natural soils than on vermiculite. Net assimilationrates and, to a lesser extent, leaf-area ratios were depressedby arctic climates and soils. Net assimilation rates of seven species in various habitatsin two arctic regions were about 0.1–0.3g dm–2wk–1.Previous suggestions that net assimilation rates in arctic regionsequal or exceed those in temperate regions are attributed tomisinterpretation of data or to inadequate methods. There is evidence that the depression of net assimilation ratesin arctic regions is due to the low temperatures, which, especiallywhen associated with soil nitrogen deficiency, reduce the rateat which assimilates are used in respiration and new growth;this causes sugars to accumulate to levels at which they depressassimilation.  相似文献   

14.
Stands of groundnut (Arachis hypogaea L.), a C3 legume, weregrown in controlled-environment glasshouses at 28 °C (±5°C)under two levels of atmospheric CO2 (350 ppmv or 700 ppmv) andtwo levels of soil moisture (irrigated weekly or no water from35 d after sowing). Elevated CO2 increased the maximum rate of net photosynthesisby up to 40%, with an increase in conversion coefficient forintercepted radiation of 30% (from 1–66 to 2–16g MJ–1) in well-irrigated conditions, and 94% (from 0–64to 1·24 g MJ–1) on a drying soil profile. In plantswell supplied with water, elevated CO2 increased dry matteraccumulation by 16% (from 13·79 to 16·03 t –1) and pod yield by 25% (from 2·7 to 3·4t ha–1).However, the harvest index (total poddry weight/above-grounddry weight) was unaffected by CO2 treatment. The beneficial effects of elevated CO2 were enhanced under severewater stress, dry matter production increased by 112% (from4·13 to 8·87 t ha–1) and a pod yield of1·34t ha–1 was obtained in elevated CO2, whereascomparable plotsat 350 ppmv CO2 only yielded 0·22 t ha-1.There was a corresponding decrease in harvest index from 0·15to 0·05. Following the withholding of irrigation, plants growing on astored soil water profile in elevated CO2 could maintain significantlyless negative leaf water potentials (P<0·01) for theremainder of the season than comparable plants grown in ambientCO2, allowing prolonged plant activity during drought. In plants which were well supplied with water, allocation ofdry matter between leaves, stems, roots, and pods was similarin both CO2 treatments. On a drying soil profile, allocationin plants grown in 350 ppmv CO2 changed in favour of root developmentfar earlier in the season than plants grown at 700 ppmv CO2,indicating that severe waterstress was reached earlier at 350ppmv CO2. The primary effects of elevated CO2 on growth and yield of groundnutstands weremediated by an increase in the conversion coefficientfor intercepted radiation and the prolonged maintenance of higherleaf water potentials during increasing drought stress. Key words: Arachis hypogaea, elevated CO2, water stress, dry matter production  相似文献   

15.
Photosynthetic 14C fixation by Characean cells in solutionsof high pH containing NaH14CO3 gave a measure of the abilityof these cells to take up bicarbonate (H14CO3). Whereascells of Nitella translucens from plants collected and thenstored in the laboratory absorbed bicarbonate at 1–1.5µµmoles cm–2 sec–1, rates of 3–8µµmoles cm–2 sec–1 were obtained withN. translucens cells from plants grown in the laboratory. Influxesof 5–6 µµmoles cm–2 sec–1 wereobtained with Chara australis, 3–8 µµmolescm–2 sec–1 with Nitellopsis obtusa, and 1–5µµmoles cm–2 sec–1 with Tolypella intricata.It is considered that these influxes represent the activityof a bicarbonate pump, which may be an electrogenic process. In solutions of lower pH, H14CO3 uptake would be maskedby rapid diffusion of 14CO2 into the cells: the four Characeanspecies fixed 14CO2 at maximum rates of 30–40 µµmolescm–2 sec–1 (at 21° C).  相似文献   

16.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

17.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

18.
The effect of high light and root chilling on gas exchange,chlorophyll fluorescence, and bulk shoot water potential (shoot)was examined for Pinus sylvestris seedlings. Transferring plantsfrom low light (200 µmol m–2s–1, PAR) anda soil temperature of 15 °C to high light (850 µmolm–2 s–1) and 1 °C caused >90% decrease innet photosynthesis and leaf conductance measured at 350 mm3dm-3 CO2, and a decrease in the ratio of variable to maximumfluorescence (Fv/Fm) from 0.83 to 0.63. The decrease in Fv/Fmwas, however, only marginally greater than when seedlings weretransferred from low to high light but kept at a soil temperatureof 15 °C. Thus, photoinhibition was a minor component ofthe substantial decrease observed for net photosynthesis at1 °C soil temperature. The decrease in net photosynthesisand shoot at 1 °C was associated with an increase in calculatedintracellular CO2 concentration, suggesting that non-stomatalfactors related to water stress were involved in inhibitingcarbon assimilation. Measurements at saturating external CO2concentration, however, indicate that stomatal closure was thedominant factor limiting net photosynthesis at low soil temperature.This interpretation was confirmed with additional experimentsusing Pinus taeda and Picea engelmannii seedlings. Decreasesin gas-exchange variables at 5 °C soil temperature werenot associated with changes in shoot Thus, hormonal factors,localized decreases in needles or changes in xylem flux maymediate the response to moderate root chilling.  相似文献   

19.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

20.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号