首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bivalve mollusks of the genus Mytilus(M. trossulusand M. galloprovincialis) occurring in Peter the Great Bay of the Sea of Japan were first studied in Russia. A region of nonrepetitive sequences of the gene encoding the polyphenolic adhesive protein bissus was used as a species-specific genetic marker. After amplification using specific primers, a 126-bp fragment was found to amplify in all representatives ofM. galloprovincialiscollected from driftwood in the gulf Posset (the southwestern part of Peter the Great Bay). M. trossulusspecimens from the same region were shown to have a 168-bp fragment. In Vostok Gulf (the eastern part of Peter the Great Bay), both artificially grown mussels and those from natural habitats contained a 168-bp fragment or two fragments (126- and 168-bp) that corresponded to a hybrid form between the above species. The possibility of using this genetic marker to identify closely related Mytilusstrains and their hybrids in similar habitats, near the Primorye coast in particular, was demonstrated. The presence of approximately 9% of hybrid specimens confirms that a zone of hybridization between M. trossulusand M. galloprovincialismay exist in this region.  相似文献   

2.
Few marine hybrid zones have been studied extensively, the major exception being the hybrid zone between the mussels Mytilus edulis and Mytilus galloprovincialis in southwestern Europe. Here, we focus on two less studied hybrid zones that also involve Mytilus spp.; Mytilus edulis and Mytilus trossulus are sympatric and hybridize on both western and eastern coasts of the Atlantic Ocean. We review the dynamics of hybridization in these two hybrid zones and evaluate the role of local adaptation for maintaining species boundaries. In Scandinavia, hybridization and gene introgression is so extensive that no individuals with pure M. trossulus genotypes have been found. However, M. trossulus alleles are maintained at high frequencies in the extremely low salinity Baltic Sea for some allozyme genes. A synthesis of reciprocal transplantation experiments between different salinity regimes shows that unlinked Gpi and Pgm alleles change frequency following transplantation, such that post-transplantation allelic composition resembles native populations found in the same salinity. These experiments provide strong evidence for salinity adaptation at Gpi and Pgm (or genes linked to them). In the Canadian Maritimes, pure M. edulis and M. trossulus individuals are abundant, and limited data suggest that M. edulis predominates in low salinity and sheltered conditions, whereas M. trossulus are more abundant on the wave-exposed open coasts. We suggest that these conflicting patterns of species segregation are, in part, caused by local adaptation of Scandinavian M. trossulus to the extremely low salinity Baltic Sea environment.  相似文献   

3.
The 525 strains of heterotrophic bacteria isolated from natural and cultured populations of the mussel Mytilus trossulus and the surrounding seawater were identified to a genus level on the basis of phenotypic analysis and the fatty acid composition of cell lipids. Gram-negative isolates were dominated by six genera of the family Enterobacteriaceae and by the genera Pseudoalteromonas, Vibrio, Photobacterium, Cytophaga/Flavobacterium/Bacteroides, Pseudomonas, and Moraxella, Gram-positive isolates were mainly represented by the genus Streptomyces. The taxonomic compositions of natural and cultured populations of the mussel M. trossulus in Peter the Great Bay were similar.  相似文献   

4.
The unusual mode of mitochondrial DNA inheritance, with two separate: maternal (F) and paternal (M) lineages, gives unique opportunities to study the evolution of the mitochondrial genome. This system was first discovered in the marine mussels Mytilus. The three related species: Mytilus edulis, Mytilus galloprovincialis and Mytilus trossulus form a complex in which the divergence of M and F lineages pre-dates the speciation. The complete mitochondrial genomes of both lineages were known for all species except Pacific M. trossulus. Here we report, for the first time, the complete sequences of both mitochondrial genomes of Pacific M. trossulus, filling the gap. While the reported M and F genomes are highly diverged (26%), they have similar organisation. The only difference is the translocation of one tRNA gene into the long, mosaic control region of the F genome. Consistent presence of an ORF which most likely represents the atp8 gene was confirmed in both genomes. The predicted protein has characteristics expected of the functional atp8 even though the M and F versions are markedly different in length. Comparative analysis involving all three species led to the conclusion that the cause of a faster evolution of atp8 and Mytilus mtDNA in general is most likely the Compensation-Draft Feedback process coupled with relatively relaxed selection in the M lineage. Thus, we postulate that the adaptive changes may have played a role in the emergence of highly diverged, barely recognizable atp8 in Mytilus mussels.  相似文献   

5.
P. D. Rawson  C. L. Secor    T. J. Hilbish 《Genetics》1996,144(1):241-248
Blue mussels in the Mytilus edulis species complex have a doubly uniparental mode of mtDNA inheritance with separate maternal and paternal mtDNA lineages. Female mussels inherit their mtDNA solely from their mother, while males inherit mtDNA from both parents. In the male gonad the paternal mtDNA is preferentially replicated so that only paternal mtDNA is transmitted from fathers to sons. Hybridization is common among differentiated blue mussel taxa; whenever it involves M. trossulus, doubly uniparental mtDNA inheritance is disrupted. We have found high frequencies of males without and females with paternal mtDNA among hybrid mussels produced by interspecific matings between M. galloprovincialis and M. trossulus. In contrast, hybridization between M. galloprovincialis and M. edulis does not affect doubly uniparental inheritance, indicating a difference in the divergence of the mechanisms regulating mtDNA inheritance among the three blue mussel taxa. Our data indicate a high frequency of disrupted mtDNA transmission in F(1) hybrids and suggest that two separate mechanisms, one regulating the transmission of paternal mtDNA to males and another inhibiting the establishment of paternal mtDNA in females, act to regulate doubly uniparental inheritance. We propose a model for the regulation of doubly uniparental inheritance that is consistent with these observations.  相似文献   

6.
Assortative mating (prezygotic isolation) and reduced hybrid fitness (postzygotic isolation) are typically invoked to explain the stability of hybrid zones. In the tension zone model, these factors work in opposition to migration, which promotes genetic homogeneity. Many marine animals migrate over long distances through a planktonic larval stage. Therefore, strong reproductive isolation is needed to maintain stable marine hybrid zones. However, surprisingly little is known about mating preferences and hybrid fitness in marine organisms. Smooth-shelled mussels (Mytilus spp.) form a well-known species complex, with hybridization over extensive areas such as the contact zone of M. edulis and M. galloprovincialis around European Atlantic coasts. This paper reports direct experimental evidence of assortative fertilization, hybrid larval inviability, and early heterosis for growth rate in M. edulis and M. galloprovincialis. Four crosses between pure M. edulis and M. galloprovincialis were analyzed with a new polymerase-chain-reaction-based diagnostic marker. Gamete competition between taxa was allowed in two out of the four crosses. Genotype frequencies observed at an early stage (36 h after fertilization) unambiguously revealed assortative fertilization when gamete competition was allowed. A significant reduction in hybrid viability was subsequently observed during the larval stage. At the same stage an antagonistic effect, heterosis, was observed on growth rate. However, even if heterosis is observed in the F1, it is expected to vanish in subsequent hybrid generations. Although specialization for different habitats and asynchronous spawning have been mentioned as factors contributing to the maintenance of the blue mussel hybrid zone in Europe, we argue that assortative fertilization and reduced hybrid fitness are important factors that also contribute to the stabilization of this zone. These results emphasize that multiple factors may act concomitantly in a barrier to gene flow, especially in complex life cycles. Furthermore, they show that assortative mating through gamete preference, as already demonstrated for sea urchins, may play a role in speciation processes taking place in the sea.  相似文献   

7.
Genetic variation was assayed electrophoretically at 13–16 loci in Modiolus modiolus, Mytilus edulis, and Mytilus galloprovincialis. High genetic distance ( D ) values were observed between Modiolus modiolus and Mytilus edulis (1.516 ± 0.523) and between Modiolus modiolus and Mytilus galloprovincialis (1.564 ± 0.539), whereas the distance between Mytilus edulis and M. galloprovincialis (0.167 ± 0.118) was rather low. The systematic status ot Mytilus edulis and M. galloprovincialis is discussed in relation to these lindings and the genetic distance values are used to estimate divergence times which in turn are compared with paleontological estimates. The observations of high average heterozygosity in Modiolus modiolus, and high correlations of locus heterozygosity between taxa are discussed briefly.  相似文献   

8.
Smooth-shelled mussels, Mytilus spp., have an antitropical distribution. In the Northern Hemisphere, the M. edulis complex of species is composed of three genetically well delineated taxa: M. edulis, M. galloprovincialis and M. trossulus. In the Southern Hemisphere, morphological characters, allozymes and intron length polymorphisms suggest that Mytilus spp. populations from South America and Kerguelen Islands are related to M. edulis and those from Australasia to M. galloprovincialis. On the other hand, a phylogeny of the 16S rDNA mitochondrial locus demonstrates a clear distinctiveness of southern mussels and suggests that they are related to Mediterranean M. galloprovincialis. Here, we analysed the faster-evolving cytochrome oxidase subunit I locus. The divergence between haplotypes of populations from the two hemispheres was confirmed and was found to predate the divergence between haplotypes of northern M. edulis and M. galloprovincialis. In addition, strong genetic structure was detected among the southern samples, revealing three genetic entities that correspond to (1) South America and Kerguelen Island, (2) Tasmania, (3) New Zealand. Using the trans-Arctic interchange as a molecular clock calibration, we estimated the time since divergence of populations from the two hemispheres to be between 0.5 million years (MY) and 1.3 MY (average 0.84 MY). The contrasting patterns observed for the nuclear and the organelle genomes suggested two alternative, complex scenarios: two trans-equatorial migrations and the existence of differential barriers to mitochondrial and nuclear gene flow, or a single trans-equatorial migration and a view of the composition of the nuclear genome biased by taxonomic preconception.  相似文献   

9.
Comparative analysis of different satellite DNAs in four Mytilus species.   总被引:1,自引:0,他引:1  
We report the characterization of three satellite DNAs in four species of mussel: Mytilus edulis, Mytilus galloprovincialis, Mytilus trossulus, and Mytilus californianus. The monomers of the Apa I satellite DNAs were 173, 161, and 166 bp long. These satellite monomers were used to construct phylogenetic trees to infer relationships among these species. The topologies obtained clearly indicate that M. californianus is the most divergent species with respect to the other three. Furthermore, localization of satellite DNAs on metaphase chromosomes was performed using fluorescent in situ hybridization (FISH). Fluorescent signals revealed a different organization and distribution of these three satellite DNAs.  相似文献   

10.
Hybrid zones are fascinating systems to investigate the structure of genetic barriers. Marine hybrid zones deserve more investigation because of the generally high dispersion potential of planktonic larvae which allows migration on scales unrivalled by terrestrial species. Here we analyse the genetic structure of the mosaic hybrid zone between the marine mussels Mytilus edulis and M. galloprovincialis, using three length-polymorphic PCR loci as neutral and diagnostic markers on 32 samples along the Atlantic coast of Europe. Instead of a single genetic gradient from M. galloprovincialis on the Iberian Peninsula to M. edulis populations in the North Sea, three successive transitions were observed in France. From South to North, the frequency of alleles typical of M. galloprovincialis first decreases in the southern Bay of Biscay, remains low in Charente, then increases in South Brittany, remains high in most of Brittany, and finally decreases again in South Normandy. The two enclosed patches observed in the midst of the mosaic hybrid zone in Charente and Brittany, although predominantly M. edulis-like and M. galloprovincialis-like, respectively, are genetically original in two respects. First, considering only the various alleles typical of one species, the patches show differentiated frequencies compared to the reference external populations. Second, each patch is partly introgressed by alleles of the other species. When introgression is taken into account, linkage disequilibria appear close to their maximum possible values, indicating a strong genetic barrier within all transition zones. Some pre- or postzygotic isolation mechanisms (habitat specialization, spawning asynchrony, assortative fertilization and hybrid depression) have been documented in previous studies, although their relative importance remains to be evaluated. We also provided evidence for a recent migratory 'short-cut' connecting M. edulis-like populations of the Charente patch to an external M. edulis population in Normandy and thought to reflect artificial transfer of spat for aquaculture.  相似文献   

11.
A number of studies have claimed that recombination occurs in animal mtDNA, although this evidence is controversial. Ladoukakis and Zouros (2001) provided strong evidence for mtDNA recombination in the COIII gene in gonadal tissue in the marine mussel Mytilus galloprovincialis from the Black Sea. The recombinant molecules they reported had not however become established in the population from which experimental animals were sampled. In the present study, we provide further evidence of the generality of mtDNA recombination in Mytilus by reporting recombinant mtDNA molecules in a related mussel species, Mytilus trossulus, from the Baltic. The mtDNA region studied begins in the 16S rRNA gene and terminates in the cytochrome b gene and includes a major noncoding region that may be analogous to the D-loop region observed in other animals. Many bivalve species, including some Mytilus species, are unusual in that they have two mtDNA genomes, one of which is inherited maternally (F genome) the other inherited paternally (M genome). Two recombinant variants reported in the present study have population frequencies of 5% and 36% and appear to be mosaic for F-like and M-like sequences. However, both variants have the noncoding region from the M genome, and both are transmitted to sperm like the M genome. We speculate that acquisition of the noncoding region by the recombinant molecules has conferred a paternal role on mtDNA genomes that otherwise resemble the F genome in sequence.  相似文献   

12.
Mussels ( Mytilus sp.) from Sanriku Bay, NE Honshu, Japan were examined using morphological characters and electrophoretically detectable enzyme polymorphisms. Using both sets of criteria, the mussels were identified as M. galloprovincialis , the mediterranean mussel. This confirms an earlier opinion, which was based on morphological criteria alone, that the mediterranean mussel occurs on the mainland coast of Japan. Investigation of some early Japanese literature suggests that mussels did not occur in this area earlier this century, and M. galloprovincialis may have been introduced to the region of Kobe, around 1930–1935. The present-day distribution of M. edulis and M. galloprovincialis in the Japanese archipelago may be explained by sea-surface temperatures in the region.  相似文献   

13.
Successful fertilization in free-spawning marine organisms depends on the interactions between genes expressed on the surfaces of eggs and sperm. Positive selection frequently characterizes the molecular evolution of such genes, raising the possibility that some common deterministic process drives the evolution of gamete recognition genes and may even be important for understanding the evolution of prezygotic isolation and speciation in the marine realm. One hypothesis is that gamete recognition genes are subject to selection for prezygotic isolation, namely, reinforcement. In a previous study, positive selection on the gene coding for the acrosomal sperm protein M7 lysin was demonstrated among allopatric populations of mussels in the Mytilus edulis species group (M. edulis, Mytilus galloprovincialis, and Mytilus trossulus). Here, we expand sampling to include M7 lysin haplotypes from populations where mussel species are sympatric and hybridize to determine whether there is a pattern of reproductive character displacement (RCD), which would be consistent with reinforcement driving selection on this gene. We do not detect a strong pattern of RCD; neither are there unique haplotypes in sympatry nor is there consistently greater population structure in comparisons involving sympatric populations. One distinct group of haplotypes, however, is strongly affected by natural selection, and this group of haplotypes is found within M. galloprovincialis populations throughout the Northern Hemisphere concurrent with haplotypes common to M. galloprovincialis and M. edulis. We suggest that balancing selection, perhaps resulting from sexual conflicts between sperm and eggs, maintains old allelic diversity within M. galloprovincialis.  相似文献   

14.
In 1978 and 1999, seven and eight species of Mytilidae (Mollusca: Bivalvia) were analyzed using gel electrophoresis. Mean heterozygosity per individual (Hobs and Hexp) and genetic distances (Rogers' DR, Nei's DN, and others) were estimated for 21 and 24 allozyme loci. Mytilus modiolus had the highest variation among the species examined. Genetic distances were lowest for the M. trossulus-M. galloprovincialis species pair: DR = 0.147, DN = 0.078. Overall, five species of the genera Mytilus and Crenomytilus were genetically closer to each other (DR = 0.147, DN = 0.078) than to the remaining three species of this group (DR = 0.807, DN = 2.243). The relationships among the species were examined using cluster analysis and parsimony methods. The densest clusters in the dendrograms consisted of (1) M. trossulus and M. galloprovincialis and (2) M. coruscus, M. californianus, and M. grayanus. These two clusters form a larger cluster (3), which comprises all representatives of the nominal genus Mutilus and C. grayanus. The Mytilus-Crenomytilus cluster is consecutively joined by Adula falcatoides, Mytilus modiolus, and Septifer keenae. According to Nei's genetic distances DN, the time of divergence between M. trossulus and M. galloprovincialis is 0.8-1.6 Myr; between M. californianus and C. grayanus, it is approximately 9 Myr; and between M. coruscus and the latter pair, it is 13 Myr before present. Two representatives of the Mytilus ex gr. edulis complex diverged from the Mytilus-Crenomytilus group of large-size Pacific species about 20 Myr ago. These results are in good agreement with paleontological data and indicate a relatively recent origin of the Mytilus ex gr. edulis complex. The results obtained can be used in systematics and phylogeny of modern Mytilidae.  相似文献   

15.
Marine invertebrate sperm proteins are particularly interesting because they are characterized by positive selection and are likely to be involved in prezyogotic isolation and, thus, speciation. Here, we present the first survey of interspecific and intraspecific variation of a bivalve sperm protein among a group of species that regularly hybridize in nature. M7 lysin is found in sperm acrosomes of mussels and dissolves the egg vitelline coat, permitting fertilization. We sequenced multiple alleles of the mature protein-coding region of M7 lysin from allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). A significant McDonald-Kreitman test showed an excess of fixed amino acid replacing substitutions between species, consistent with positive selection. In addition, Kolmogorov-Smirnov tests showed significant heterogeneity in polymorphism to divergence ratios for both synonymous variation and combined synonymous and nonsynonymous variation within M. galloprovincialis. These results indicate that there has been adaptive evolution at M7 lysin and, furthermore, show that positive selection on sperm proteins can occur even when postzygotic reproductive isolation is incomplete.  相似文献   

16.
Blue mussels of the genus Mytilus have an unusual mode of mitochondrial DNA inheritance termed doubly uniparental inheritance (DUI). Females are homoplasmic for the F mitotype which is inherited maternally, whereas males are heteroplasmic for this and the paternally inherited M mitotype. In areas where species distributions overlap a varying degree of hybridization occurs; yet genetic differences between allopatric populations are maintained. Observations from natural populations and previous laboratory experiments suggest that DUI may be disrupted by hybridization, giving rise to heteroplasmic females and homoplasmic males. We carried out controlled laboratory crosses between Mytilus edulis and M. galloprovincialis to produce pure species and hybrid larvae of known parentage. DNA markers were used to follow the fate of the F and M mitotypes through larval development. Disruption of the mechanism which determines whether the M mitotype is retained or eliminated occurred in an estimated 38% of M. edulis x M. galloprovincialis hybrid larvae, a level double that previously observed in adult mussels from a natural M. edulis x M. galloprovincialis hybrid population. Furthermore, reciprocal hybrid crosses exhibited contrasting types of DUI disruption. The results indicate that disruption of DUI in hybrid mussels may be associated with increased mortality and hence could be a factor in the maintenance of genetic integrity for each species.  相似文献   

17.
We show that parasitism by the trematode Prosorhynchus squamatus in parental and introgressed Mytilus edulis/galloprovincialis (Bivalvia) mussels occurs in individuals with a predominantly M. edulis genome. This result suggests that the restricted specificity of P. squamatus is dependent on genetic factor(s) present in M. edulis. Because of its strong pathogenic effects (i.e. total castration and possible death), this parasite may be a source of intense selection against M. edulis genomes when they are present in a site. As a consequence, it may favour the geographic extension of the M. galloprovincialis genome. Previous studies have indicated that, in hybrid zones, recombinant genotypes are more susceptible to parasitic infections than either parental genotype. We demonstrate that this is not the case for the M. edulis/M. galloprovincialis system, and that the parental genotype alone determines susceptibility.  相似文献   

18.
Mussels of the genus Mytilus have distinct and highly diverged male and female mitochondrial DNA (mtDNA) genomes with separate routes of inheritance. Previous studies of European populations of Mytilus trossulus demonstrated that 33% of males are heteroplasmic for a second mtDNA genome of increased length and that hybridization with Mytilus edulis does not block mtDNA introgression, in contrast to reports for American populations. Here, we demonstrate that the female mtDNA type of M. edulis has replaced the resident female mtDNA type of European M. trossulus. This is supported by COIII sequence data indicating that the female mtDNA of European M. trossulus is very similar to that of M. edulis and that in phylogenetic trees, the mtDNAs of these two species cluster together but separately from American M. trossulus sequences, the latter not being disturbed by introgressive hybridization. We also provide evidence that the mtDNA genome of increased length found in heteroplasmic males of European M. trossulus derives from a recent partition of an introgressed M. edulis female type into the male route of transmission. Neutrality tests reveal that European populations of M. trossulus display an excess of replacement polymorphism within the female mtDNA type with respect to conspecific American populations, as well as a significant excess of rare variants, of a similar magnitude to those previously reported for the invading European M. edulis mtDNA. Results are consistent with a nearly neutral model of molecular evolution and suggest that selection acting on European M. trossulus mtDNA is largely independent of the nuclear genetic background.  相似文献   

19.
This paper examines the genetic variability of the Pacific mussel Mytilus trossulus and an introduced Atlantic species, M. galloprovincialis, in the northwestern Sea of Japan (Peter the Great Bay and Kievka Bay). The genotyping of individuals from eight populations was carried out using eight polymorphic enzyme loci and two nuclear DNA markers (Me-5 and ITS-1,2); the occurrence frequency of parent species and their hybrids was determined. The enzyme and nuclear markers demonstrated concordant genetic variation. The genotypes of the native species M. trossulus were predominant in the samples studied. The frequency of the introduced species M. galloprovincialis in the total material was relatively low; however, it reached 42 ± 2% in samples that were collected in Possjet Bay near the town of Zarubino in a zone of active international navigation. In this area the greatest number of hybrids was found as well. It is concluded that the invasion of M. galloprovincialis in the northwestern Sea of Japan is continuing; permanent populations of this mussel appeared in Possjet Bay that were not recorded here previously.  相似文献   

20.
Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号