首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the NH(2)-terminal leucine zipper and dileucine motifs of hIK1 in the assembly, trafficking, and function of the channel was investigated using cell surface immunoprecipitation, co-immunoprecipitation (Co-IP), immunoblot, and whole-cell patch clamp techniques. Mutation of the NH(2)-terminal leucine zipper at amino acid positions 18 and 25 (L18A/L25A) resulted in a complete loss of steady-state protein expression, cell surface expression, and whole-cell current density. Inhibition of proteasomal degradation with lactacystin restored L18A/L25A protein expression, although this channel was not expressed at the cell surface as assessed by cell surface immunoprecipitation and whole-cell patch clamp. In contrast, inhibitors of lysosomal degradation (leupeptin/pepstatin) and endocytosis (chloroquine) had little effect on L18A/L25A protein expression or localization. Further studies confirmed the rapid degradation of this channel, having a time constant of 19.0 +/- 1.3 min compared with 3.2 +/- 0.8 h for wild type hIK1. Co-expression studies demonstrated that the L18A/L25A channel associates with wild type channel, thereby attenuating its expression at the cell surface. Co-IP studies confirmed this association. However, L18A/L25A channels failed to form homotetrameric channels, as assessed by Co-IP, suggesting the NH(2) terminus plays a role in tetrameric channel assembly. As with the leucine zipper, mutation of the dileucine motif to alanines, L18A/L19A, resulted in a near complete loss in steady-state protein expression with the protein being similarly targeted to the proteasome for degradation. In contrast to our results on the leucine zipper, however, both chloroquine and growing the cells at the permissive temperature of 27 degrees C restored expression of L18A/L19A at the cell surface, suggesting that the defect in the channel trafficking is the result of a subtle folding error. In conclusion, we demonstrate that the NH(2) terminus of hIK1 contains overlapping leucine zipper and dileucine motifs essential for channel assembly and trafficking to the plasma membrane.  相似文献   

2.
We have investigated the role of the S4-S5 linker in the trafficking of the intermediate (human (h) IK1) and small (rat SK3) conductance K(+) channels using a combination of patch-clamp, protein biochemical, and immunofluorescence-based techniques. We demonstrate that a lysine residue (Lys(197)) located on the intracellular loop between the S4 and S5 domains is necessary for the correct trafficking of hIK1 to the plasma membrane. Mutation of this residue to either alanine or methionine precluded trafficking of the channel to the membrane, whereas the charge-conserving arginine mutation had no effect on channel localization or function. Immunofluorescence localization demonstrated that the K197A mutation resulted in a channel that was primarily retained in the endoplasmic reticulum, and this could not be rescued by incubation at 27 degrees C. Furthermore, immunoblot analysis revealed that the K197A mutation was overexpressed compared with wild-type hIK1 and that this was due to a greatly diminished rate of channel degradation. Co-immunoprecipitation studies demonstrated that the K197A mutation did not preclude multimer formation. Indeed, the K197A mutation dramatically suppressed expression of wild-type hIK1 at the cell surface. Finally, mutation of this conserved lysine in rat SK3 similarly resulted in a channel that failed to correctly traffic to the plasma membrane. These results are the first to demonstrate a critical role for the S4-S5 linker in the trafficking and/or function of IK and SK channels.  相似文献   

3.
The intermediate-conductance calcium-activated potassium channel (IK1) promotes cell proliferation of numerous cell types including endothelial cells, T lymphocytes, and several cancer cell lines. The mechanism underlying IK1-mediated cell proliferation was examined in human embryonic kidney 293 (HEK293) cells expressing recombinant human IK1 (hIK1) channels. Inhibition of hIK1 with TRAM-34 reduced cell proliferation, while expression of hIK1 in HEK293 cells increased proliferation. When HEK293 cells were transfected with a mutant (GYG/AAA) hIK1 channel, which neither conducts K(+) ions nor promotes Ca(2+) entry, proliferation was increased relative to mock-transfected cells. Furthermore, when HEK293 cells were transfected with a trafficking mutant (L18A/L25A) hIK1 channel, proliferation was also increased relative to control cells. The lack of functional activity of hIK1 mutants at the cell membrane was confirmed by a combination of whole cell patch-clamp electrophysiology and fura-2 imaging to assess store-operated Ca(2+) entry and cell surface immunoprecipitation assays. Moreover, in cells expressing hIK1, inhibition of ERK1/2 and JNK kinases, but not of p38 MAP kinase, reduced cell proliferation. We conclude that functional K(+) efflux at the plasma membrane and the consequent hyperpolarization and enhanced Ca(2+) entry are not necessary for hIK1-induced HEK293 cell proliferation. Rather, our data suggest that hIK1-induced proliferation occurs by a direct interaction with ERK1/2 and JNK signaling pathways.  相似文献   

4.
Normal membrane protein function requires trafficking from the endoplasmic reticulum. Here, we studied processing of the KCNQ1 channel mutated in LQT1, the commonest form of the long QT syndrome. Serial C terminus truncations identified a small region (amino acids (aa) 610-620) required for normal cell surface expression. Non-trafficked truncations assembled as tetramers but were nevertheless retained in the endoplasmic reticulum. Further mutagenesis did not identify specific residues mediating channel processing; cell surface expression was preserved with the mutation of known trafficking motifs in the channel and with alanine scanning across aa 610-620. Structural prediction algorithms place aa 610-620 at the C-terminal end of an alpha-helix (aa 586-618) that includes a leucine zipper and is part of a coiled coil. Mutants disrupting the leucine zipper but preserving the predicted coiled coil reached the cell surface, whereas those disrupting the coil did not. These data suggest that specific protein-protein interactions are required for normal channel processing. Further biochemical studies ruled out three candidate proteins, namely KCNE1, yotiao, and KCNQ1 itself, as effectors of this coiled coil-mediated trafficking. Four LQT1 mutations within this helix generated little or no current and were not expressed on the cell surface, whereas LQT1 mutations in adjacent residues, which produce a milder clinical phenotype, generate only slightly reduced current and are expressed on the cell surface. These data suggest that mutations within this domain cause human disease by interfering with normal channel processing. More generally, we have identified a domain whose structural integrity is required for normal surface expression of the KCNQ1 channel.  相似文献   

5.
Calmodulin (CaM) regulates gating of several types of ion channels but has not been implicated in channel assembly or trafficking. For the SK4/IK1 K+ channel, CaM bound to the proximal C terminus ("Ct1 " domain) acts as the Ca2+ sensor. We now show that CaM interacting with the C terminus of SK4 also controls channel assembly and surface expression. In transfected cells, removing free CaM by overexpressing the CaM-binding domain, Ct1, redistributed full-length SK4 protein from the plasma membrane to the cytoplasm and decreased whole-cell currents. Making more CaM protein available by overexpressing the CaM gene abrogated the dominant-negative effect of Ct1 and restored both surface expression of SK4 protein and whole-cell currents. The distal C-terminal domain ("Ct2") also plays a role in assembly, but is not CaM-dependent. Co-immunoprecipitation experiments demonstrated that multimerization of SK4 subunits was enhanced by CaM and inhibited by removal of CaM, indicating that CaM regulates trafficking of SK4 by affecting the assembly of channels. Our results support a model in which CaM-dependent association of SK4 monomers at their Ct1 domains regulates channel assembly and surface expression. This appears to represent a novel mechanism for controlling ion channels, and consequently, the cellular functions that depend on them.  相似文献   

6.
Merozoite surface protein 3 (MSP3), an important vaccine candidate, is a soluble polymorphic antigen associated with the surface of Plasmodium falciparum merozoites. The MSP3 sequence contains three blocks of heptad repeats that are consistent with the formation of an intramolecular coiled-coil. MSP3 also contains a glutamic acid-rich region and a putative leucine zipper sequence at the C-terminus. We have disrupted the msp3 gene by homologous recombination, resulting in the expression of a truncated form of MSP3 that lacks the putative leucine zipper sequence but retains the glutamic acid-rich region and the heptad repeats. Here, we show that truncated MSP3, lacking the putative leucine zipper region, does not localize to the parasitophorous vacuole or interact with the merozoite surface. Furthermore, the acidic-basic repeat antigen (ABRA), which is present on the merozoite surface, also was not localized to the merozoite surface in parasites expressing the truncated form of MSP3. The P. falciparum merozoites lacking MSP3 and ABRA on the surface show reduced invasion into erythrocytes. These results suggest that MSP3 is not absolutely essential for blood stage growth and that the putative leucine zipper region is required for the trafficking of both MSP3 and ABRA to the parasitophorous vacuole.  相似文献   

7.
We previously demonstrated that the ATP/PKA-dependent activation of the human intermediate conductance, Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal motif. The NH2-terminus of hIK1 contains a multi-basic 13RRRKR17 motif, known to be important in the trafficking and function of ion channels. While individual mutations within this domain have no effect on channel function, the triple mutation (15RKR17/AAA), as well as additional double mutations, result in a near complete loss of functional channels, as assessed by whole-cell patch-clamp. However, cell-surface immunoprecipitation studies confirmed expression of these mutated channels at the plasma membrane. To elucidate the functional consequences of the (15)RKR(17)/AAA mutation we performed inside-out patch clamp recordings where we observed no difference in Ca2+ affinity between the wild-type and mutated channels. However, in contrast to wild-type hIK1, channels expressing the 15RKR17/AAA mutation exhibited rundown, which could not be reversed by the addition of ATP. Wild-type hIK1 channel activity was reduced by alkaline phosphatase both in the presence and absence of ATP, indicative of a phosphorylation event, whereas the 15RKR17/AAA mutation eliminated this effect of alkaline phosphatase. Further, single channel analysis demonstrated that the 15RKR17/AAA mutation resulted in a four-fold lower channel open probability (P(o)), in the presence of saturating Ca2+ and ATP, compared to wild-type hIK1. In conclusion, these results represent the first demonstration for a role of the NH2-terminus in the second messenger-dependent regulation of hIK1 and, in combination with our previous findings, suggest that this regulation is dependent upon a close NH2/C-terminal association.  相似文献   

8.
Lee J  Sugden B 《Journal of virology》2007,81(17):9121-9130
Latent membrane protein 1 (LMP1) of Epstein Barr virus (EBV) is important for maintaining proliferation of EBV-infected B cells. LMP1, unlike its cellular counterpart, CD40, signals without a ligand and is largely internal to the plasma membrane. In order to understand how LMP1 initiates its ligand-independent signaling, we focused on a leucine heptad in LMP1's first membrane-spanning domain that was shown to be necessary for LMP1's signaling through NF-kappaB. LZ1EBV, a recombinant EBV genetically altered to express LZ1, a derivative of LMP1 in which a leucine heptad was replaced with alanines, transformed B cells with 56% of wild-type (wt) EBV's efficiency, demonstrating the importance of this heptad. To elucidate the mechanism by which this domain contributes to the functions of LMP1, the properties of the wt and LZ1 were compared in transfected cells. LZ1 failed to home to lipid rafts as efficiently as did wt LMP1. The distribution of tagged derivatives of LZ1 also differed from that of wt LMP1 in transfected cells. LZ1's defect in homing to lipid rafts and altered trafficking likely underlie the defect in transformation of LZ1EBV. While the third and fourth membrane-spanning domains of LMP1 foster its trafficking to the Golgi, the leucine heptad within the first membrane-spanning domain contributes to its trafficking, particularly to internal rafts. B cells that are successfully transformed by LZ1EBV have the same average number of viral genomes and the same fraction of cells with capped LZ1 at the cell surface but express 50% more of the LZ1 allele than wt infected cells.  相似文献   

9.
Small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK3/Kcnn3 and IK1/Kcnn4) are expressed in vascular endothelium. Their activities play important roles in regulating vascular tone through their modulation of intracellular concentration ([Ca(2+)](i)) required for the production of endothelium-derived vasoactive agents. Activation of endothelial IK1 or SK3 channels hyperpolarizes endothelial cell membrane potential, increases Ca(2+) influx, and leads to the release of vasoactive factors, thereby impacting blood pressure. To examine the distinct roles of IK1 and SK3 channels, we used electrophysiological recordings to investigate IK1 and SK3 channel trafficking in acutely dissociated endothelial cells from mouse aorta. The results show that SK3 channels undergo Ca(2+)-dependent cycling between the plasma membrane and intracellular organelles; disrupting Ca(2+)-dependent endothelial caveolae cycling abolishes SK3 channel trafficking. Moreover, transmitter-induced changes in SK3 channel activity and surface expression modulate endothelial membrane potential. In contrast, IK1 channels do not undergo rapid trafficking and their activity remains unchanged when either exo- or endocytosis is block. Thus modulation of SK3 surface expression may play an important role in regulating endothelial membrane potential in a Ca(2+)-dependent manner.  相似文献   

10.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pacemakers in cardiac myocytes and neurons. Although their membrane topology closely resembles that of voltage-gated K+ channels, the mechanism of their unique gating behavior in response to hyperpolarization is still poorly understood. We have identified a highly conserved leucine zipper motif in the S5 segment of HCN family members. In order to study the role of this motif for channel function, the leucine residues of the zipper were individually mutated to alanine, arginine, or glutamine residues. Leucine zipper mutants traffic to the plasma membrane, but the channels lose their sensitivity to open upon hyperpolarization. Thus, our data indicate that the leucine zipper is an important molecular determinant for hyperpolarization-activated channel gating. Residues of the leucine zipper interact with the adjacent S6 segment of the channel. This interaction is essential for voltage-dependent gating of the channel. The lower part of the leucine zipper, at the intracellular mouth of the channel, is important for stabilizing the closed state. Mutations at these sites increase current amplitudes or result in channels with deficient closing and increased min-Po. Our data are further supported by homology models of the open and closed state of the HCN2 channel pore. Thus, we conclude that the leucine zipper of HCN channels is a major determinant for hyperpolarization-activated channel gating.  相似文献   

11.
The CYS3 positive regulator is a basic region-leucine zipper (bZIP) DNA-binding protein that is essential for the expression of sulfur-controlled structural genes in Neurospora crassa. An approach of modifying the dimerization specificity of the CYS3 leucine zipper was used to determine whether the in vivo regulatory function of CYS3 requires the formation of homodimeric or heterodimeric complexes. Two altered versions of CYS3 with coiled coil elecrostatic interactions favorable to heterodimerization showed restoration of wild-type CYS3 function only when simultaneously expressed in a delta cys-3 strain. In addition, constructs having the CYS3 leucine zipper swapped for that of the oncoprotein Jun or the CYS3 leucine zipper extended by a heptad repeat showed wild-type CYS3 function when transformed into a delta cys-3 strain. Gel mobility shift and immunoprecipitation assays were used to confirm the modified CYS3 proteins dimerization and DNA binding properties. The studies, which precluded wild-type CYS3 dimerization, indicate that in vivo CYS3 is fully functional as a homodimer since no interaction was required with other leucine zipper proteins to activate sulfur regulatory and structural gene expression. The results demonstrate the utility of leucine zipper modification to study the in vivo function of bZIP proteins.  相似文献   

12.
13.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

14.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

15.
16.
We previously demonstrated that the ATP/PKA?dependent activation of the human intermediate conductance, Ca2+?activated K+ channel, hIK1, is dependent upon a C?terminal motif. The NH2?terminus of hIK1 contains a multi?basic 13RRRKR17 motif, known to be important in the trafficking and function of ion channels. While individual mutations within this domain have no effect on channel function, the triple mutation (15RKR17/AAA), as well as additional double mutations, result in a near complete loss of functional channels, as assessed by whole?cell patch?clamp. However, cell?surface -immunoprecipitation studies confirmed expression of these mutated channels at the plasma membrane. To elucidate the functional consequences of the 15RKR17/AAA mutation we performed inside?out patch clamp recordings where we observed no difference in Ca2+ affinity between the wild?type and mutated channels. However, in contrast to wild?type hIK1, channels expressing the 15RKR17/AAA mutation exhibited rundown, which could not be reversed by the addition of ATP. Wild-type hIK1 channel activity was reduced by alkaline phosphatase both in the presence and absence of ATP, indicative of a phosphorylation event, whereas the 15RKR17/AAA mutation eliminated this effect of alkaline phosphatase. Further, single channel analysis demonstrated that the 15RKR17/AAA mutation resulted in a four?fold lower channel open probability (Po), in the presence of saturating Ca2+ and ATP, compared to wild?type hIK1. In conclusion, these results represent the first demonstration for a role of the NH2?terminus in the second messenger?dependent regulation of hIK1 and, in -combination with our previous findings, suggest that this regulation is dependent upon a close NH2/C?terminal association.  相似文献   

17.
Specific interactions between alpha-helical transmembrane segments are important for folding and/or oligomerization of membrane proteins. Previously, we have shown that most transmembrane helix-helix interfaces of a set of crystallized membrane proteins are structurally equivalent to soluble leucine zipper interaction domains. To establish a simplified model of these membrane-spanning leucine zippers, we studied the homophilic interactions of artificial transmembrane segments using different experimental approaches. Importantly, an oligoleucine, but not an oligoalanine, se- quence efficiently self-assembled in membranes as well as in detergent solution. Self-assembly was maintained when a leucine zipper type of heptad motif consisting of leucine residues was grafted onto an alanine host sequence. Analysis of point mutants or of a random sequence confirmed that the heptad motif of leucines mediates self-recognition of our artificial transmembrane segments. Further, a data base search identified degenerate versions of this leucine motif within transmembrane segments of a variety of functionally different proteins. For several of these natural transmembrane segments, self-interaction was experimentally verified. These results support various lines of previously reported evidence where these transmembrane segments were implicated in the oligomeric assembly of the corresponding proteins.  相似文献   

18.
GTPases of the Ras-related RGK family are negative regulators of high voltage-activated (HVA) Ca2+ channel activity. In this study, we examined the role of calmodulin (CaM) association in Rem-mediated Ca2+ channel inhibition. We found that the Rem/CaM interaction is Ca2+-dependent, and that truncation of the Rem C-terminus before position 277 prevents CaM binding. Serial mutagenesis of the Rem C-terminus between residues 265 and 276 to alanine generated two mutants (RemL271A and RemL274A) that displayed reduced CaM binding, and a subset of these mutants displayed significantly lower cell periphery localization than RemWT. However, reductions in CaM association or membrane trafficking did not affect function, as all Rem mutants could completely inhibit Ca2+ channels. The Rem1–275 truncation mutant partially inhibited Ca2+ channel activity despite its inability to bind CaM. Taken together, these studies indicate that CaM association is not essential for either Rem-mediated Ca2+ channel inhibition or plasma membrane localization. Jonathan Satin is an established investigator of the American Heart Association.  相似文献   

19.
Leucine zippers are oligomerization domains used in a wide range of proteins. Their structure is based on a highly conserved heptad repeat sequence in which two key positions are occupied by leucines. The leucine zipper of the cell cycle-regulated Nek2 kinase is important for its dimerization and activation. However, the sequence of this leucine zipper is most unusual in that leucines occupy only one of the two hydrophobic positions. The other position, depending on the register of the heptad repeat, is occupied by either acidic or basic residues. Using NMR spectroscopy, we show that this leucine zipper exists in two conformations of almost equal population that exchange with a rate of 17 s(-1). We propose that the two conformations correspond to the two possible registers of the heptad repeat. This hypothesis is supported by a cysteine mutant that locks the protein in one of the two conformations. NMR spectra of this mutant showed the predicted 2-fold reduction of peaks in the (15)N HSQC spectrum and the complete removal of cross peaks in exchange spectra. It is possible that interconversion of these two conformations may be triggered by external signals in a manner similar to that proposed recently for the microtubule binding domain of dynein and the HAMP domain. As a result, the leucine zipper of Nek2 kinase is the first example where the frameshift of coiled-coil heptad repeats has been directly observed experimentally.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号