首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:获得能稳定分泌抗人呼吸道合胞病毒(human respiratory syncytial virus, RSV)融合糖蛋白(fusion glycoprotein, F)单克隆抗体(monoclonal antibody, mAb)的杂交瘤细胞株,以期用于RSV感染的早期诊断和被动免疫治疗研究。方法:通过杂交瘤技术制备可特异性识别RSV F的单抗,体外鉴定生物学特性。结果:获得了可分泌抗RSV F蛋白的杂交瘤细胞株F8,体外连续传代培养2个月,能稳定分泌抗体F8,培养上清效价为1∶1000,亲和常数(Ka)为6.8×108 L/mol。F8属IgG1型抗体,可特异性识别RSV F1亚单位的AA 205-222。免疫酶法蚀斑减少中和实验证实F8具有体外中和活性及融合抑制活性。结论:获得具有中和活性的抗RSV F蛋白的单克隆抗体,为RSV感染的早期诊断及被动免疫治疗等奠定了基础。  相似文献   

2.
Human respiratory syncytial virus (HRSV) fusion (F) protein is an essential component of the virus envelope that mediates fusion of the viral and cell membranes, and, therefore, it is an attractive target for drug and vaccine development. Our aim was to analyze the neutralizing mechanism of anti-F antibodies in comparison with other low-molecular-weight compounds targeted against the F molecule. It was found that neutralization by anti-F antibodies is related to epitope specificity. Thus, neutralizing and nonneutralizing antibodies could bind equally well to virions and remained bound after ultracentrifugation of the virus, but only the former inhibited virus infectivity. Neutralization by antibodies correlated with inhibition of cell-cell fusion in a syncytium formation assay, but not with inhibition of virus binding to cells. In contrast, a peptide (residues 478 to 516 of F protein [F478-516]) derived from the F protein heptad repeat B (HRB) or the organic compound BMS-433771 did not interfere with virus infectivity if incubated with virus before ultracentrifugation or during adsorption of virus to cells at 4°C. These inhibitors must be present during virus entry to effect HRSV neutralization. These results are best interpreted by asserting that neutralizing antibodies bind to the F protein in virions interfering with its activation for fusion. Binding of nonneutralizing antibodies is not enough to block this step. In contrast, the peptide F478-516 or BMS-433771 must bind to F protein intermediates generated during virus-cell membrane fusion, blocking further development of this process.Human respiratory syncytial virus (HRSV), a member of the Pneumovirus genus of the Paramyxoviridae family, is the main cause of severe lower respiratory tract infections in very young children (36), and it is a pathogen of considerable importance in the elderly (24, 26) and in immunocompromised adults (22). Currently, there is no effective vaccine against the virus although it is known that passive administration of neutralizing antibodies to individuals at high risk is an effective immunoprophylaxis (37, 38).The HRSV genome is a single-stranded negative-sense RNA molecule of approximately 15 kb that encodes 11 proteins (16, 53). Two of these proteins are the main surface glycoproteins of the virion. These are (i) the attachment (G) protein, which mediates virus binding to cells (44), and (ii) the fusion (F) protein, which promotes both fusion of the viral and cell membranes at the initial stages of the infectious cycle and fusion of the membrane of infected cells with those of adjacent cells to form characteristic syncytia (72). These two glycoproteins are the only targets of neutralizing antibodies either induced in animal models (19, 63, 65, 70) or present in human sera (62).The G protein is a highly variable type II glycoprotein that shares neither sequence identity nor structural features with the attachment protein of other paramyxoviruses (75). It is synthesized as a precursor of about 300 amino acids (depending on the strain) that is modified posttranslationally by the addition of a large number of N- and O-linked oligosaccharides and is also palmitoylated (17). The G protein is oligomeric (probably a homotetramer) (23) and promotes binding of HRSV to cell surface proteoglycans (35, 40, 49, 67). Whether this is the only interaction of G with cell surface components is presently unknown.The F protein is a type I glycoprotein that is synthesized as an inactive precursor of 574 amino acids (F0) which is cleaved by furin during transport to the cell surface to yield two disulfide-linked polypeptides, F2 from the N terminus and F1 from the C terminus (18). Like other viral type I fusion proteins, the mature F protein is a homotrimer which is in a prefusion, metastable, conformation in the virus particle. After fusion, the F protein adopts a highly stable postfusion conformation. Stability of the postfusion conformation is determined to great extent by two heptad repeat (HR) sequences, HRA and HRB, present in the F1 chain. Mixtures of HRA and HRB peptides form spontaneously heterotrimeric complexes (43, 51) that assemble in six-helix bundles (6HB), consisting of an internal core of three HRA helices surrounded by three antiparallel HRB helices, as determined by X-ray crystallography (79).The three-dimensional (3D) structure of the HRSV F protein has not been solved yet. Nevertheless, the structures of the pre- and postfusion forms of two paramyxovirus F proteins have revealed substantial conformational differences between the pre- and postfusion conformations (77, 78). The present hypothesis about the mechanism of membrane fusion mediated by paramyxovirus F proteins proposes that, following binding of the virus to the cell surface, the prefusion form of the F glycoprotein is activated, and membrane fusion is triggered. The F protein experiences then a series of conformational changes which include the exposure of a hydrophobic region, called the fusion peptide, and its insertion into the target membrane. Subsequent refolding of this intermediate leads to formation of the HRA and HRB six-helix bundle, concomitant with approximation of the viral and cell membranes that finally fuse, placing the fusion peptide and the transmembrane domain in the same membrane (4, 20). The formation of the 6HB and the associated free energy change are tightly linked to the merger of the viral and cellular membranes (60).Antibodies play a major role in protection against HRSV. Animal studies have demonstrated that immunization with either F or G glycoproteins induces neutralizing antibodies and protects against a viral challenge (19, 63, 70). Furthermore, transfer of these antibodies (31, 56) or of anti-F or anti-G monoclonal antibodies (MAbs) protects mice, cotton rats, or calves against either a human or bovine RSV challenge, respectively (65, 68, 73). Likewise, infants at high risk of severe HRSV disease are protected by the prophylactic administration of immunoglobulins with high anti-HRSV neutralizing titers (33). Finally, a positive correlation was found between high titers of serum neutralizing antibodies and protection in adult volunteers challenged with HRSV (34, 74), while an inverse correlation was found between high titers of neutralizing antibodies and risk of infection in children (29) and in the elderly (25).Whereas all the anti-G monoclonal antibodies reported to date are poorly neutralizing (1, 28, 48, 71), some anti-F monoclonal antibodies have strong neutralization activity (1, 3, 5, 28, 46). It is believed that HRSV neutralization by anti-G antibodies requires simultaneous binding of several antibodies to different epitopes, leading to steric hindrance for interaction of the G glycoprotein with the cell surface. Indeed, it has been shown that neutralization is enhanced by mixtures of anti-G monoclonal antibodies (1, 50), mimicking the effect of polyclonal anti-G antibodies. In contrast, highly neutralizing anti-F monoclonal antibodies do not require cooperation by other antibodies to block HRSV infectivity efficiently (1).In addition to neutralizing antibodies, other low-molecular-weight compounds directed against the F protein are potent inhibitors of HRSV infectivity. Synthetic peptides that reproduce sequences of heptad repeat B inhibit both membrane fusion promoted by the F protein and HRSV infectivity (42). Also, other small molecules obtained by chemical synthesis have been shown to interact with F protein and inhibit HRSV infectivity. These HRSV entry inhibitors have been the topic of intense research in recent years (55).This study explores the mechanisms of HRSV neutralization by different inhibitors of membrane fusion, including anti-F monoclonal antibodies, an HRB peptide, and the synthetic compound BMS-433771 (13-15). The results obtained indicate that antibodies and low-molecular-weight compounds block membrane fusion at different stages during virus entry.  相似文献   

3.
4.
The fusion glycoprotein (F) of respiratory syncytial virus (RSV), which mediates membrane fusion and virus entry, was shown to bind RhoA, a small GTPase, in yeast two-hybrid interaction studies. The interaction was confirmed in vivo by mammalian two-hybrid assay and in RSV-infected HEp-2 cells by coimmunoprecipitation. Furthermore, the interaction of F with RhoA was confirmed in vitro by enzyme-linked immunosorbent assay and biomolecular interaction analysis. Yeast two-hybrid interaction studies with various deletion mutants of F and with RhoA indicate that the key binding domains of these proteins are contained within, or overlap, amino acids 146 to 155 and 67 to 110, respectively. The biological significance of this interaction was studied in RSV-infected HEp-2 cells that were stably transfected to overexpress RhoA. There was a positive correlation between RhoA expression and RSV syncytium formation, indicating that RhoA can facilitate RSV-induced syncytium formation.  相似文献   

5.
目的:从大容量噬菌体抗体库中筛选人源性抗呼吸道合胞病毒F蛋白的单链抗体。方法:以RSV F蛋白为靶抗原,通过“吸附-洗涤-洗脱-扩增”过程从天然人源性噬菌体抗体库中筛选特异性抗F蛋白单链抗体。5轮筛选后,单克隆经ELISA检测,阳性克隆进行核酸序列分析,并将阳性克隆噬菌体感染E.coli HB2151,经IPTG诱导,制备抗RSV F蛋白的可溶性单链抗体,并进行Western及Dot blot分析。结果:经过筛选,获得了18株能与F蛋白特异性结合的阳性克隆,取OD值最高的克隆E4经测序并检索Kabat数据库分析,显示其基因与人免疫球蛋白可变区基因具有高度同源性,Western及Dot blot分析表明为单链抗体。结论:利用天然人源性噬菌体抗体库技术制备出高特异性的人源性抗RSV F蛋白单链抗体。  相似文献   

6.
人呼吸道合胞病毒活疫苗研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
人呼吸道合胞病毒是引起婴幼儿支气管炎和肺炎的主要原因,也可导致免疫缺陷病人及老年人群显著发病和死亡.人呼吸道合胞病毒疫苗已被世界卫生组织(World Health Organization,WHO)列为全球最优先发展的疫苗之一.经过50多年的研究,尤其是随着重组技术和反向遗传学的出现,对RSV疫苗的研究取得了重要进展,...  相似文献   

7.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in infants and young children worldwide. Infection is mediated, in part, by an initial interaction between attachment protein (G) and a highly sulfated heparin-like glycosaminoglycan (Gag) located on the cell surface. Synthetic overlapping peptides derived from consensus sequences of the G protein ectodomain from both RSV subgroups A and B were tested by heparin-agarose affinity chromatography for their abilities to bind heparin. This evaluation identified a single linear heparin binding domain (HBD) for RSV subgroup A (184A-->T198) and B (183K-->K197). The binding of these peptides to Vero cells was inhibited by heparin. Peptide binding to two CHO cell mutants (pgsD-677 and pgsA-745) deficient in heparan sulfate or total Gag synthesis was decreased 50% versus the parental cell line, CHO-K1, and decreased an average of 87% in the presence of heparin. The RSV-G HBD peptides were also able to inhibit homologous and heterologous virus infectivity of Vero cells. These results indicate that the sequence 184A/183K-->198T/K197 for RSV subgroups A and B, respectively, defines an important determinant of RSV-G interactions with heparin.  相似文献   

8.
9.
10.
11.
12.
《CMAJ》1961,85(20):1110
  相似文献   

13.
14.
15.
A large epizootic of an acute respiratory disease of cattle occurred in Japan during the months from October 1968 to May 1969. A virus was recovered in primary cultures of calf kidney and testicle cells from nasal swabs of affected cattle. Neutralization tests revealed the virus to be closely related to the Long strain of human respiratory syncytial virus. The virus induced cytopathic changes including the formation of syncytia and acidophilic-cytoplasmic inclusions in calf kidney and testicle cell cultures. A calf inoculated with the virus by the respiratory route developed an illness resembling the natural disease. Most cattle clinically diagnosed as having the disease showed significant rises of neutralizing antibody titer for the isolated virus, whereas none or only small fractions of those animals showed serological evidence for recent infection with bovine ephemeral fever virus, infectious bovine rhinotracheitis virus, Ibaraki virus, bovine diarrhea virus, bovine adenovirus Type 7 and parainfluenza virus Type 3. Neutralization tests on paired sera revealed a wide dissemination of the isolated virus among cattle in many areas of the country during the epizootic. All these findings leave no doubt that the epizootic was caused by bovine respiratory syncytial virus. This is the first study that ever shows the presence of infection of cattle with this virus in Japan.  相似文献   

16.
Respiratory Syncytial Virus (RSV) is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F) surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.  相似文献   

17.
利用呼吸道合胞病毒的单克隆抗体,通过间接免疫荧光法和免疫转印法对本室分离到的武汉地区1988-1992年的56份RSV毒株进行了分型,可将其分为A、B两型和B1、B2亚型,流行病学分析显示:本地区RSV的主要流行株,四年中有三年为B型株。不同于欧美等地;A、B两型的分布还具有灶化分布的特点;两型在性别、发病年龄之间无显著性差异。  相似文献   

18.
Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by “DS-Cav1” mutations and by an appended C-terminal trimerization motif or “foldon” from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide “rings”, with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen.  相似文献   

19.
呼吸道合胞病毒(RSV)感染是一个影响婴幼儿健康的全球性的问题,目前尚未有令人满意的治疗药物,免疫预防就显得尤为重要。近年研究表明,免疫预防在疫苗、单克隆抗体以及免疫球蛋白等领域均取得较大进展。  相似文献   

20.
The G protein of 23 strains of human respiratory syncytial virus isolated in Havana, Cuba, between October 1994 and January 1995 was analyzed at the antigenic and genetic level. All viruses reacted with 10 of 11 antibodies specific for the Long strain. Moreover, the G protein gene of the Cuban isolates had only five nucleotide differences from the sequence of the Long gene. The homogeneity of the Cuban isolates and their resemblance to an ancient strain, such as Long, are at odds with previous findings for viruses isolated in countries with a temperate climate and different socioeconomic status. The G proteins of three of four other viruses isolated in Havana 2 years later (1996) were also identical to those of the 1994-to-1995 isolates, and the fourth virus had a single extra nucleotide difference. This, again, is unusual, since no identical viruses had been isolated in different epidemics previously. The singular characteristics of the Cuban isolates reported here are discussed in terms of the epidemiological, climatic, and socioeconomic characteristics of Cuba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号