首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
人类锌指结构新基因ZNF18的克隆和表达谱分析   总被引:2,自引:1,他引:2  
在很多转录因子中发现的锌指结构,被认为在人类心脏的发育和相关疾病的发生过程中发挥重要的作用。本文报道了克隆和表达分析人类新的锌指蛋白基因ZNF18。该基因cDNA长2 767 bp,编码一个有549个氨基酸的蛋白,这一蛋白含有一个SCAN结构域,一个KRAB结构域和5个连续的C2H2型锌指结构域。ZNF18蛋白与小鼠Zfp535有77%的同源性。ZNF18基因定位于人染色体17p12~p13,包含9个外显子和8个内含子。以ZNF18全长编码区为探针进行Northern杂交,结果显示ZNF18在成体小鼠各组织中广泛表达,但在心脏中低丰度表达。整体原位杂交结果显示,ZNF18基因在小鼠胚胎的表达有很高的动态性。ZNF18主要在E7.5小鼠胚胎的胚外组织表达,E8.5出现了胚胎躯干前端表达。ZNF18从E9.0开始在胚胎的心脏和尾部表达,尤其在E10.5胚胎的心脏高丰度表达。这提示ZNF18基因与心脏发育过程可能有密切的关系。  相似文献   

3.
We report the isolation of Zfp105, the mouse homolog of the human ZNF35 zinc finger gene. Zfp105 and ZNF35 are highly conserved at the protein and nucleotide level, and Zfp105 maps to a region of mouse Chromosome (Chr) 9 that is homologous to the human region containing ZNF35. Zpf105 is highly expressed in the testis, especially in pachytene spermatocytes and round spermatids. The possible role of this gene product in maintaining an ordered germ cell differentiation process is discussed. Received: 11 February 1998 / Accepted: 1 May 1998  相似文献   

4.
Li J  Chen X  Yang H  Wang S  Guo B  Yu L  Wang Z  Fu J 《Experimental cell research》2006,312(20):3990-3998
Human zinc finger protein 191 (ZNF191/ZNF24) was cloned and characterized as a SCAN family member, which shows 94% identity to its mouse homologue zinc finger protein 191 (Zfp191). ZNF191 can specifically interact with an intronic polymorphic TCAT repeat (HUMTH01) in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. Zfp191 is widely expressed during embryonic development and in multiple tissues and organs in adult. To investigate the functions of Zfp191 in vivo, we have used homologous recombination to generate mice that are deficient in Zfp191. Heterozygous Zfp191(+/-) mice are normal and fertile. Homozygous Zfp191(-/-) embryos are severely retarded in development and die at approximately 7.5 days post-fertilization. Unexpectedly, in Zfp191(-/-) and Zfp191(+/-) embryos, TH gene expression is not affected. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of ZNF191 in cultured cells revealed an essential role for Zfp191 in cell proliferation. In further agreement with this function, no viable Zfp191(-/-) cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of Zfp191(+/-) intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of G418. These data show that Zfp191 is indispensable for early embryonic development and cell proliferation.  相似文献   

5.
The human zinc finger protein 191 (ZNF191) is a Krüppel-like protein and can specifically interact with the widespread TCAT motif which constitutes the HUMTH01 microsatellite in the tyrosine hydroxylase (TH) gene (encoding the rate-limiting enzyme in the synthesis of catecholamines). Allelic variations of HUMTH01 are known to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. This factor has been isolated from bone marrow and promyelocytic leukemia cell lines indicating that ZNF191 also plays a role in hematopoiesis. Thus, ZNF191 could participate in the regulation of several genes implicated in different functions. Moreover, mice that are deficient in Zfp191, the murine homologue of ZNF191, have been shown to be severely retarded in development and to die approximately at embryonic day 7.5. In order to gain further insight into its biological functions, we have analysed the localisation of Zfp191 throughout mouse development. Expression was detected early during embryogenesis in ectodermal, endodermal, mesodermal and extra-embryonic tissues. In particular, Zfp191 was observed in the developing central nervous system. Interestingly, its expression levels were prominent in areas of proliferation such as the subventricular zone. Zfp191 expression pattern during development can account for the phenotypic features of Zfp191(-/-) embryos.  相似文献   

6.
7.
8.
9.
10.
11.
The mechanisms responsible for maintaining genomic methylation imprints in mouse embryos are not understood. We generated a knockout mouse in the Zfp57 locus encoding a KRAB zinc finger protein. Loss of just the zygotic function of Zfp57 causes partial neonatal lethality, whereas eliminating both the maternal and zygotic functions of Zfp57 results in a highly penetrant embryonic lethality. In oocytes, absence of Zfp57 results in failure to establish maternal methylation imprints at the Snrpn imprinted region. Intriguingly, methylation imprints are reacquired specifically at the maternally derived Snrpn imprinted region when the zygotic Zfp57 is present in embryos. This suggests that there may be DNA methylation-independent memory for genomic imprints. Zfp57 is also required for the postfertilization maintenance of maternal and paternal methylation imprints at multiple imprinted domains. The effects on genomic imprinting are consistent with the maternal-zygotic lethality of Zfp57 mutants.  相似文献   

12.
13.
14.
15.
16.
孙翀  赵舟宙  高立  孙燕  邵焕杰  李文鑫 《遗传》2006,28(5):513-517
ZNF268是一个典型的KRAB类锌指基因,含有24个C2H2型锌指基序和一个KRAB功能域,它在人胚胎发育早期表达,并与胚胎肝脏的发育相关。本研究通过免疫组化的方法,发现ZNF268在3~5周龄人胚的造血干细胞中有表达;进一步通过RT-PCR的方法检测发现ZNF268在健康成人全血细胞中也有表达,并且表达有4个差异剪接本,从中克隆得到两个新的ZNF268差异剪接本ZNF268c和ZNF268d。推测ZNF268和血细胞生长发育相关。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号