首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increasing oil content and improving the fatty acid composition in the seed oil are important breeding goals for rapeseed (Brassica napus L.). The objective of the study was to investigate a possible relationship between fatty acid composition and oil content in an oilseed rape doubled haploid (DH) population. The DH population was derived from a cross between the German cultivar Sollux and the Chinese cultivar Gaoyou, both having a high erucic acid and a very high oil content. In total, 282 DH lines were evaluated in replicated field experiments in four environments, two each in Germany and in China. Fatty acid composition of the seed oil was analyzed by gas liquid chromatography and oil content was determined by NIRS. Quantitative trait loci (QTL) for fatty acid contents were mapped and their additive main effects were determined by a mixed model approach using the program QTLMapper. For all fatty acids large and highly significant genetic variations among the genotypes were observed. High heritabilities were determined for oil content and for all fatty acids (h 2 = 0.82 to 0.94), except for stearic acid content (h 2= 0.38). Significant correlations were found between the contents of all individual fatty acids and oil content. Closest genetic correlations were found between oil content and the sum of polyunsaturated fatty acids (18:2 + 18:3; r G = −0.46), the sum of monounsaturated fatty acids (18:1 + 20:1 + 22:1; r G = 0.46) and palmitic acid (16:0; r G = −0.34), respectively. Between one and eight QTL for the contents of the different fatty acids were detected. Together, their additive main effects explained between 28% and 65% of the genetic variance for the individual fatty acids. Ten QTL for fatty acid contents mapped within a distance of 0 to 10 cM to QTL for oil content, which were previously identified in this DH population. QTL mapped within this distance to each other are likely to be identical. The results indicate a close interrelationship between fatty acid composition and oil content, which should be considered when breeding for increased oil content or improved oil composition in rapeseed.  相似文献   

2.
Changes in the fatty acid composition of docosahexaenoic acid (DHA)-producing Schizochytrium limacinum SR21 were investigated. The addition of cyanocobalamin, which is an active component of vitamin B12, decreased the content of odd-chain fatty acids such as pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0). Cyanocobalamin may upregulate the cobalamin-dependent methylmalonyl-CoA mutase, which converts propionic acid to succinic acid, thereby decreasing the content of odd-chain fatty acids. The addition of p-toluic acid resulted in a decrease in docosapentaenoic acid (DPA, 22:5n-6) content and an increase in eicosapentaenoic acid (EPA, 20:5n-3) content in a dose-dependent manner. Two additional peaks of fatty acids, characterized as Δ4,7,10,14-eicosatetraenoic acid (20:4n-7) and Δ4,7,10,14-docosatetraenoic acid (22:4n-9), were detected.  相似文献   

3.
Hydroxy fatty acids are considered as important value-added product for industrial application because of their special properties such as higher viscosity and reactivity. Microbial production of the hydroxy fatty acids from various fatty acid substrates have been actively studied using several microorganisms. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were produced from oleic acid and ricinoleic acid, respectively. Based on the postulated common metabolic pathway involved in DOD and TOD formation by PR3, it was assumed that palmitoleic acid containing a singular 9-cis double bond, common structural property sharing with oleic acid and ricinoleic acid, could be utilized by PR3 to produce hydroxy fatty acid. In this study, we tried to use palmitoleic acid as substrate for production of hydroxy fatty acid by PR3 and firstly confirmed that PR3 could produce 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) with 23% yield from palmitoleic acid. DHD production was peaked at 72 h after the substrate was added to the 24-h-culture.  相似文献   

4.
To investigate both seasonal changes and possible intracorporal gradients of phospholipid fatty acid composition, skeletal muscles (n=124), hearts (n=27), and livers (n=34) from free-living brown hares (Lepus europaeus) were analyzed. Phospholipids from both skeletal muscles and heart had a high degree of unsaturation with 66.8±0.63% and 65.7±0.5% polyunsaturated fatty acids, respectively. This is the highest proportion of polyunsaturated fatty acids reported in any mammalian tissue. Polyunsaturated fatty acid content in skeletal muscles was 2.3% greater in winter compared to summer (F1,106=17.7; P=0.0001), which may reflect thermoregulatory adjustments. Arachidonate (C20:4n-6) showed the greatest seasonal increase (+2.5%; F=7.95; P=0.0057). However, there were no pronounced differences in polyunsaturated fatty acid content between skeletal muscles from different locations in the body (m. iliopsoas, m. longissimus dorsi and m. vastus). Total muscle phospholipid polyunsaturated fatty acid content was correlated with polyunsaturated fatty acid content in triacyglycerols from perirenal white adipose tissue depots (r2=0.61; P=0.004). Polyunsaturated fatty acids were enriched in muscle phospholipids (56.8–73.6%), compared to white adipose tissue lipids (20.9–61.2%), and liver phospholipids (25.1–54.2%). We suggest that the high degree of muscle membrane unsaturation is related to hare-specific traits, such as a high maximum running speed.Abbreviations BMR basal metabolic rate - DPA docosapentaenoic acid - DHA docosahexaenoic acid - FA fatty acid - MUFA monounsaturated fatty acid - PC principal component - PUFA polyunsaturated fatty acid - SFA saturated fatty acid - UI unsaturation index - WAT white adipose tissueCommunicated by: G. Heldmaier  相似文献   

5.
A study of the fatty acid composition was made for 35 Arthrospira strains, concentrating on the most abundant fatty acids, the two polyunsaturated C18 acids, linoleic and γ-linolenic acid, and palmitic acid. When grown at 30 C and low irradiance (10 μmol photon m−2 s−1), these three acids together formed 88–92% of total fatty acids. There were considerable differences in the composition of the two polyunsaturated acids. Depending on the strain, linoleic acid formed 13.1–31.5% and γ-linolenic acid formed 12.9–29.4% total fatty acids. In contrast, the range for palmitic acid was narrow: 42.3–47.6% of total fatty acids. Repeat experiments on several strains under defined conditions led to closely similar results for any particular environment, suggesting that fatty acid composition can be used as an aid in differentiating between strains. Five additional strains, which had apparently originated from the same original stock cultures as 3 of the 35 in the main study, but from different culture collections, were also assayed. With four strains the results were similar, irrespective of culture source, but with one strain marked differences occurred, especially in the polyunsaturated C18 fatty acid fraction. These differences were independent of the age of the culture. In addition, straight morphotypes derived during repeat subcultures of four strains; each showed a similar fatty acid composition to that of the helical morphotypes of the same strains. A decrease in temperature from 30 to 20 C, an increase in irradiance (at 30 C) from 10 to 70 μmol photon m−2 s−1 and transfer to dark heterotrophy all favoured an increase in polyunsaturated C18 fatty acids. The highest γ-linolenic acid content of any conditions was found for three strains grown heterotrophically on glucose in the dark at 30 C. A comparative study of six strains of Spirulina confirmed a previous study showing the absence of γ-linolenic acid in all Spirulina strains, thus permitting the separation of these two genera.  相似文献   

6.
The double bond geometry of most of the naturally occurring unsaturated fatty acid residues is cis. Due to the relevance of fatty acids as structural components of cell membranes and as biologically active molecules, the change of the cis geometry means a change of the associated functions and activities. The finding that the cis to trans isomerization is effective in phospholipids by the intervention of radical species led to the discovery that there can indeed occur an endogenous formation of trans fatty acids, whose significance in biological systems started to be addressed with in vitro and in vivo studies. Studies of liposome models simulating the formation of isomerizing species and evaluating their ability to interact with the hydrophobic part of the membrane bilayer has contributed to the gain in knowledge of the fundamental features of the lipid isomerization in membranes. Further work is in progress for the identification of the real culprits of the in vivo lipid isomerization, and recent results are shown on oleic acid micelles, where NO2 radicals are not able to induce double bond isomerization in comparison with amphiphilic thiol, such as 2-mercaptoethanol. H2S and sulfur-containing amino acid residues are two of the possible species involved in this process at a biological level. An update of the scenario of the geometrical isomerization in membranes by free radicals is provided, together with applications and perspectives in life sciences.  相似文献   

7.
It is generally accepted that short (C2-C5) and medium (C6-C11) chain volatile fatty acids (VFAs) are among the primary causal molecules of axillary malodour. It is also widely acknowledged that malodour generation is attributable to the biotransformation of odourless natural secretions, into volatile odorous products, by cutaneous bacteria. However, little information is available on the biochemical origins of VFAs on axillary skin. In these studies, assay systems were developed to investigate the generation of VFAs from lipid substrates readily available to the bacteria resident on axillary skin. A major route to short and medium chain VFAs in the axilla was shown to be the partial catabolism of structurally unusual (e.g. methyl-branched) longer chain fatty acids by a previously uncharacterized sub-group of the Corynebacterium genus, corynebacteria (A). In contrast, corynebacteria (B) are incapable of growth on fatty acid. Structurally unusual fatty acids originate from the triacylglycerol component of sebum, and probably also apocrine sweat, by the action of bacterial lipases. Interestingly, VFA formation in the axilla is a dynamic process, with some cutaneous microorganisms, specifically micrococci and brevibacteria, capable of fully catabolizing these odorants. The results of these studies provide new understanding on the biochemical origins of VFA-based axillary malodour.  相似文献   

8.
Effect of monoterpenes on lipid oxidation in maize   总被引:5,自引:0,他引:5  
Zunino MP  Zygadlo JA 《Planta》2004,219(2):303-309
The monoterpenes 1,8-cineole, thymol, geraniol, menthol and camphor strongly inhibited the root growth of Zea mays L. seedlings. They induced an oxidative stress as measured by the production of malondialdehyde, conjugated dienes and peroxides. This oxidative stress depended on the length of the exposure and on the monoterpene applied. The total fatty acid content was measured and fatty acid composition was analyzed. Unsaturated fatty acids increased in the treated samples. The alcoholic and non-alcoholic monoterpenes appeared to have different modes of action.Abbreviations MDA Malondialdehyde - TFA Total fatty acid content - FA Fatty acid - IC80 Concentration causing 80% inhibition  相似文献   

9.
Summary The hydrocarbon composition ofPseudomonas maltophilia was determined by gas chromatography-mass spectrometry. Mono-, di- and tri-unsaturated alkenes were identified with a predominance of polyunsaturated components. The carbon chains of the alkenes contained single methyl branches iniso andanteiso position and double methyl branches in theiso-iso andanteiso-anteiso configurations. The composition of the hydrocarbons from cells grown in synthetic media enriched with amino acids or volatile fatty acids demonstrated that the probable precursors incorporated into individual hydrocarbons were branched and normal fatty acid chains in the range from C3 to C16. The probable fatty acid precursors which were connected together to form the major triunsaturated hydrocarbon chains were two monounsaturated chains, whereas the major liunsaturated chains resulted from condensation of saturated and monounsaturated chains. The probable precursors for the major monounsaturated hydrocarbons were C14 (C15) and C16 (C15) fatty acids. The accumulation of hydrocarbons was not detected until the cells were in the late exponential phase of growth; the maximal levels were reached at the mid-stationary phase of growth.  相似文献   

10.
The fatty acid composition of the fruit oils or seed oils of Pittosporaceae (eight genera, 10 species), Araliaceae (two species), Simarubaceae (three species), and of one umbelliferous and one rutaceous species were determined by gas chromatography, argentation TLC and ozonolysis. In the Pittosporaceae, in which the major C18 fatty acid of all species was either oleic acid (18:1, 9c) or linoleic acid (18:2, 9c, 12c), large amounts of C20 and C22 fatty acids seem to occur regularly. Petroselinic (18:1, 6c) and tariric (18:1, 6a) acids were absent. However, petroselinic acid was the major fatty acid in the Araliaceae and Umbelliferae. In these two families only small amounts of C20 and C22 acids were detected and tariric acid was absent. The Rutales contained relatively high amounts of trans-octadecenoic acids (18:1, 9t). Tariric acid was the major fatty acid in the two species of Picramnia (Simarubraceae), which also contained small amounts of petroselinic acid. The major fatty acids in Ailanthus glandulosa (Simarubaceae) and Phellodendron amurense (Rutaceae) were linoleic or linolenic acid (18:3, 9c, 12c, 15c); these species contained neither tariric nor petroselinic acid and the levels of C20 and C22 fatty acids were low. The appearance of schizogenous resin canals and polyacetylenes and the absence of iridoids and petroselinic acid allows the Pittosporaceae to be separated from the Rutales and Araliales and to be placed in an independent order, the Pittosporales. Arguments for a rather close relationship of the Pittosporales to the Araliales and Cornales (including the Escalloniaceae) are presented.  相似文献   

11.
The lipids of seeds, leaves, and roots of parsley,Petroselinum crispum, and of heterotrophic as well as photomixotrophic cell cultures of this plant were characterized with the aim of finding a system for studying the biosynthesis of unusual fatty acids. It was found that (Z)-6-octadecenoic acid, petroselinic acid, which is the typical constituent fatty acid of triacylglycerols in seeds, occurs only in small proportions, if at all, in leaves, roots, and cell cultures of parsley. In all lipid classes studied petroselinic acid is accompanied by its (Z)-9- and (Z)-11-isomers, oleic and vaccenic acid, respectively. The phosphatidylcholines, phosphatidylethanolamines, and triacylglycerols of both heterotrophic and photomixotrophic callus cultures contain no petroselinic acid but rather oleic and vaccenic acids in equal ratios. Thus, cell cultures of parsley appear to be suitable for studying the biosynthesis of vaccenic acid. The constituent octadecadienoic acids in the lipids of various tissues and cell cultures of parsley consist almost exclusively of the (Z),(Z)-9,12-isomer, linoleic acid, which is derived from oleic acid. (Z),(Z)-6,9- and (Z),(Z)-11,14-Octadecadienoic acids, which could be expected as products of desaturation of petroselinic and vaccenic acids, were not found in any of the lipids of organs and cell cultures investigated.Abbreviations TLC thin-layer chromatography - GLC gas-liquid chromatography  相似文献   

12.
Summary The simple lipids ofSclerotium cepivorum, the causal agent of white rot of onion and nine other fungal species of the same class were investigated. The fatty acid composition of the simple lipids of these fungi were determined by GLC. The main fatty acids common to these fungal species were C16 (saturated) and C18 (unsaturated) acids. The sterol fraction was isolated by column chromatography and its components were detected by GLC and mass spectrometry. Ergosterol and γ-Ergostenol were found mostly in all fungal species under investigation. However, two fungal species namelyAlternaria alternata andScolecobasidium constrictum showed no Ergosterol.  相似文献   

13.
Acetyl-CoA carboxylase [ACCase; acetylCoA: carbon dioxide ligase (ADP forming), EC 6.4.1.2] catalyses the ATP-dependent carboxylation of acetylCoA to form malonyl-CoA. We have amplified a fragment of the biotin carboxylase (BC) domain of the Ustilago maydis acetyl-CoA carboxylase (ACC1) gene from genomic DNA and used this amplified DNA fragment as a probe to recover the complete gene from a EMBL3 genomic library. The ACC1 gene has a reading frame of 6555 nucleotides, which is interrupted by a single intron of 80 bb in length. The gene encodes a protein containing 2185 amino acids, with a calculated Mr of 242 530; this is in good agreement with the size of ACCases from other sources. Further identification was based on the position of putative binding sites for acetyl-CoA, ATP, biotin and carboxybiotin found in other ACCases. A single ACC1 allele was disrupted in a diploid wild-type strain. After sporulation of diploid disruptants, no haploid progeny containing a disrupted acc1 allele were recovered, even though an exogenous source of fatty acids was provided. The data indicate that, in U. maydis, ACCase is required for essential cellular processes other than de novo fatty acid biosynthesis.The EMBL accession number for the sequence reported in this paper is Z46886  相似文献   

14.
The phospholipids of Pseudomonas putida P8 contain monounsaturated fatty acids in the cis and trans configuration. Cells of this phenol-degrading bacterium change the proportions of these isomers in response to the addition or elimination of a membrane active compound such as 4-chlorophenol. This study undoubtedly reveals that the cis unsaturated fatty acids are directly converted into trans isomers without involvement of de novo synthesis of fatty acids. Oleic acid, which cannot be synthesized by this bacterium, was incorporated as a cis unsaturated fatty acid marker in the membrane lipids of growing cells. The conversion of this fatty acid into the corresponding trans isomer was demonstrated by gas chromatographic-mass spectrometric analysis and use of 14C-labeled oleic acid. Separation and isolation of the cellular membranes showed that the fatty acid isomerase is located in the cytoplasmic membrane of P. putida P8.Abbreviation 4-CP 4-chlorophenol  相似文献   

15.
The objective of this research was to investigate how ferulic and p-coumaric acids affect lipid and fatty acid composition during canola (Brassica napus L.) seed germination. Data showed that both compounds increased total lipid and fatty acid contents in the cotyledons during germination. The largest accumulation in lipids occurred at 1.0 mM p-coumaric acid with an increase in all unsaturated fatty acids. The results suggest that allelochemicals interfere in canola seed germination by reducing lipid mobilization.  相似文献   

16.
We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18°C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23°C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18°C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid(s) - MR metabolic rate - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SFA saturated fatty acid(s) - T a air temperature - T b body temperature - Ts body surface temperature(s) - TNZ thermoneutral zone - UFA unsaturated fatty acid(s)  相似文献   

17.
G. Du  Y. Si  J. Yu 《Biotechnology letters》2001,23(19):1613-1617
Medium-chain-length fatty acids, such as nonanoic (9:0) and octanoic (8:0) acids, are more toxic to Ralstonia eutropha than volatile fatty acids such as acetic, propionic and butyric acids. Nonanoic acid was degraded to acetic and propionic acids via -oxidation by Ralstonia eutropha for cell growth and synthesis of polyhydroxyalkanoates (PHAs). In a mixture of the fatty acids, utilization of nonanoic acid was depressed by acetic and propionic acids, and vice versa. The PHA accumulation from the volatile fatty acids was decreased from 53% (w/w) of dry cell mass to 23% due to the nonanoic acid. Similar phenomena were also observed with octanoic acid and its metabolic intermediates, acetic and butyric acids.  相似文献   

18.
Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl–acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2 g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively.  相似文献   

19.
The transport of α-methyl-D-glucoside and two aminoacids, L-phenylalanine and L-leucine by a temperature sensitive fatty acid requiring mutant ofSalmonella typhimurium was studied under conditions of supplementation withcis or trans-unsaturated fatty acids. The results of such experiments definitely establish a relationship between the fatty acids composition of the membrane and the transport property of the cells. Cells grown in the presence of trans-unsaturated fatty acids cannot transport so efficiently as compared to the cis-unsaturated fatty acid-grown cells except linolelaidic acid, atrans-trans-unsaturated fatty acid. Protein: phospholipid ratio of the membrane also varies significantly under such conditions. The affinity of L-phenylalanine transport carrier for the substrate changes remarkably in cells grown in the presence of differentcis or trans-unsaturated fatty acids and indicate the possible role of membrane lipids in membrane assembly as well as regulation of the activity of L-phenylalanine transport system.  相似文献   

20.
Summary Cold acclimation lowers the selected body temperature (T b) in many ectothermic vertebrates. This change in behavioural thermoregulation is accompanied by an increase in the proportion of polyunsaturated fatty acids in tissues and cellular membranes. We investigated how diets containing different fatty acids, known to significantly alter the fatty acid composition of animal tissues and membranes, affect the selected T b of the lizard Tiliqua rugosa. Lizards on a diet containing many polyunsaturated fatty acids (10% sunflower oil) showed a 3–5°C decrease in T b, whereas T b in animals on a diet containing mainly saturated fatty acids (10% sheep fat) did not change. Our study suggests that the composition of dietary lipids influences thermoregulation in ectothermic vertebrates and may thus play a role in the seasonal adjustment of their physiology.Abbreviations CST central standard time - T a air temperature - T b Body temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号