共查询到20条相似文献,搜索用时 15 毫秒
1.
Robin K. Cameron Richard A. Dixon Christopher J. Lamb 《The Plant journal : for cell and molecular biology》1994,5(5):715-725
Local infection with a necrotizing pathogen can render plants resistant to subsequent infection by normally virulent pathogens. A system for biological induction of such systemic acquired resistance (SAR) in Arabidopsis thaliana is reported. When plants were immunized by local inoculation of a single leaf with avirulent Pseudomonas syringae pv. tomato (Pst) carrying the avrRpt2 avirulence gene, after 2 days other leaves became resistant, as measured symptomatically and by in planta bacterial growth, to challenge with a virulent Pst strain lacking this avirulence gene. Resistance was systemic and protected the plants against infection by other virulent pathogens including P. syringae pv. maculicola. Low-dose inoculation induced a strong SAR and double immunizations did not increase the level of protection indicating that the response of only a few cells to the immunizing bacteria is required. SAR was not induced by the virulent strain of Pst lacking avrRpt2. However, experiments with the Arabidopsis RPS2 disease resistance gene mutant rps2-201, which does not exhibit a local hypersensitive response to Pst carrying the corresponding avirulence gene avrRpt2, indicate that a hypersensitive response contributes to, but is not essential for, the induction of SAR. Thus, avrRpt2 activates either a branching signal pathway or separate parallel pathways for induction of localized hypersensitive resistance and SAR, with downstream potentiation of the systemic response by the local response. Using this system for the biological induction of SAR in Arabidopsis, it should be possible to dissect the molecular genetics of SAR by the isolation of mutants affected in the production, transmission, perception and transduction of the systemic signal(s). 相似文献
2.
Yang W Moore IF Koteva KP Bareich DC Hughes DW Wright GD 《The Journal of biological chemistry》2004,279(50):52346-52352
The tetracycline antibiotics block microbial translation and constitute an important group of antimicrobial agents that find broad clinical utility. Resistance to this class of antibiotics is primarily the result of active efflux or ribosomal protection; however, a novel mechanism of resistance has been reported to be oxygen-dependent destruction of the drugs catalyzed by the enzyme TetX. Paradoxically, the tetX genes have been identified on transposable elements found in anaerobic bacteria of the genus Bacteroides. Overexpression of recombinant TetX in Escherichia coli followed by protein purification revealed a stoichiometric complex with flavin adenine dinucleotide. Reconstitution of in vitro enzyme activity demonstrated a broad tetracycline antibiotic spectrum and a requirement for molecular oxygen and NADPH in antibiotic degradation. The tetracycline products of TetX activity were unstable at neutral pH, but mass spectral and NMR characterization under acidic conditions supported initial monohydroxylation at position 11a followed by intramolecular cyclization and non-enzymatic breakdown to other undefined products. TetX is therefore a FAD-dependent monooxygenase. The enzyme not only catalyzed efficient degradation of a broad range of tetracycline analogues but also conferred resistance to these antibiotics in vivo. This is the first molecular characterization of an antibiotic-inactivating monooxygenase, the origins of which may lie in environmental bacteria. 相似文献
3.
Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance 总被引:10,自引:0,他引:10 下载免费PDF全文
One of several induced defense responses in plants is systemic acquired resistance (SAR), which is regulated by salicylic acid and in Arabidopsis by the NIM1/NPR1 protein. To identify additional components of the SAR pathway or other genes that regulate SAR-independent resistance, we performed genetic suppressor screens of mutagenized nim1-1 seedlings, which are highly susceptible to infection by Peronospora parasitica. We isolated the son1 (suppressor of nim1-1) mutant, which shows full restoration of pathogen resistance without the induction of SAR-associated genes and expresses resistance when combined with a salicylate hydroxylase (nahG) transgene. These features indicate that son1-mediated resistance is distinct from SAR. Resistance is effective against both the virulent oomycete Peronospora and the bacterial pathogen Pseudomonas syringae pv tomato strain DC3000. We cloned SON1 and found it to encode a novel protein containing an F-box motif, an element found within the specificity determinant in the E3 ubiquitin-ligase complex. We propose the existence of a novel defense response that is independent of SAR and negatively regulated in Arabidopsis by SON1 through the ubiquitin-proteosome pathway. 相似文献
4.
5.
Olivier Hilfiker Raphaël Groux Friederike Bruessow Karin Kiefer Jürgen Zeier Philippe Reymond 《The Plant journal : for cell and molecular biology》2014,80(6):1085-1094
Although they constitute an inert stage of the insect's life, eggs trigger plant defences that lead to egg mortality or attraction of egg parasitoids. We recently found that salicylic acid (SA) accumulates in response to oviposition by the Large White butterfly Pieris brassicae, both in local and systemic leaves, and that plants activate a response that is similar to the recognition of pathogen‐associated molecular patterns (PAMPs), which are involved in PAMP‐triggered immunity (PTI). Here we discovered that natural oviposition by P. brassicae or treatment with egg extract inhibit growth of different Pseudomonas syringae strains in Arabidopsis through the activation of a systemic acquired resistance (SAR). This egg‐induced SAR involves the metabolic SAR signal pipecolic acid, depends on ALD1 and FMO1, and is accompanied by a stronger induction of defence genes upon secondary infection. Although P. brassicae larvae showed a reduced performance when feeding on Pseudomonas syringae‐infected plants, this effect was less pronounced when infected plants had been previously oviposited. Altogether, our results indicate that egg‐induced SAR might have evolved as a strategy to prevent the detrimental effect of bacterial pathogens on feeding larvae. 相似文献
6.
Petersen M Brodersen P Naested H Andreasson E Lindhart U Johansen B Nielsen HB Lacy M Austin MJ Parker JE Sharma SB Klessig DF Martienssen R Mattsson O Jensen AB Mundy J 《Cell》2000,103(7):1111-1120
Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern and microarray hybridizations. MPK4 kinase activity is required to repress SAR, as an inactive MPK4 form failed to complement mpk4. Analysis of mpk4 expressing the SA hydroxylase NahG and of mpk4/npr1 double mutants indicated that SAR expression in mpk4 is dependent upon elevated SA levels but is independent of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression. 相似文献
7.
8.
Preexisting systemic acquired resistance suppresses hypersensitive response-associated cell death in Arabidopsis hrl1 mutant 总被引:1,自引:0,他引:1
The hypersensitive response (HR) displayed by resistant plants against invading pathogens is a prominent feature of plant-pathogen interactions. The Arabidopsis hypersensitive response like lesions1 (hrl1) mutant is characterized by heightened defense responses that make it more resistant to virulent pathogens. However, hrl1 suppresses avirulent pathogen-induced HR cell death. Furthermore, the high PR-1 expression observed in hrl1 remains unaltered after avirulent and virulent pathogen infections. The suppressed HR phenotype in hrl1 is observed even when an elicitor is expressed endogenously from an inducible promoter, suggesting that an impaired transfer of avirulent factors is not the reason. Interestingly, the lack of HR phenotype in hrl1 is reversed if the constitutive defense responses are compromised either by a mutation in NON EXPRESSOR OF PR-1 (NPR1) or by depleting salicylic acid due to the expression of the nahG gene. The rescue of HR cell death in hrl1 npr1 and in hrl1 nahG depends on the extent to which the constitutive systemic acquired response (SAR) is compromised. Pretreating Arabidopsis wild-type plants with SAR-inducers, before pathogen infection resulted in a significant decrease in HR cell death. Together, these results demonstrate that the preexisting SAR may serve as one form of negative feedback loop to regulate HR-associated cell death in hrl1 mutant and in the wild-type plants. 相似文献
9.
10.
Systemic acquired resistance (SAR) is a mechanism that plants utilize to connect a local pathogen infection to global defense responses. N-hydroxy-pipecolic acid (NHP) and a glycosylated derivative are produced during SAR, yet their individual roles in this process are currently unclear. Here, we report that Arabidopsis thaliana UGT76B1 generated glycosylated NHP (NHP-Glc) in vitro and when transiently expressed alongside Arabidopsis NHP biosynthetic genes in two Solanaceous plants. During infection, Arabidopsis ugt76b1 mutants did not accumulate NHP-Glc and accumulated less glycosylated salicylic acid (SA-Glc) than wild-type plants. The metabolic changes in ugt76b1 plants were accompanied by enhanced defense to the bacterial pathogen Pseudomonas syringae, suggesting that glycosylation of the SAR molecules NHP and salicylic acid by UGT76B1 plays an important role in modulating defense responses. Transient expression of Arabidopsis UGT76B1 with the Arabidopsis NHP biosynthesis genes ALD1 and FMO1 in tomato (Solanum lycopersicum) increased NHP-Glc production and reduced NHP accumulation in local tissue and abolished the systemic resistance seen when expressing NHP-biosynthetic genes alone. These findings reveal that the glycosylation of NHP by UGT76B1 alters defense priming in systemic tissue and provide further evidence for the role of the NHP aglycone as the active metabolite in SAR signaling.The Arabidopsis UDP-glycosyltransferase UGT76B1 glycosylates the systemic acquired resistance-signaling metabolite NHP and can inactivate systemic defense responses when expressed in tomato. 相似文献
11.
Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7 下载免费PDF全文
Bartsch M Gobbato E Bednarek P Debey S Schultze JL Bautor J Parker JE 《The Plant cell》2006,18(4):1038-1051
Arabidopsis thaliana ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) controls defense activation and programmed cell death conditioned by intracellular Toll-related immune receptors that recognize specific pathogen effectors. EDS1 is also needed for basal resistance to invasive pathogens by restricting the progression of disease. In both responses, EDS1, assisted by its interacting partner, PHYTOALEXIN-DEFICIENT4 (PAD4), regulates accumulation of the phenolic defense molecule salicylic acid (SA) and other as yet unidentified signal intermediates. An Arabidopsis whole genome microarray experiment was designed to identify genes whose expression depends on EDS1 and PAD4, irrespective of local SA accumulation, and potential candidates of an SA-independent branch of EDS1 defense were found. We define two new immune regulators through analysis of corresponding Arabidopsis loss-of-function insertion mutants. FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) positively regulates the EDS1 pathway, and one member (NUDT7) of a family of cytosolic Nudix hydrolases exerts negative control of EDS1 signaling. Analysis of fmo1 and nudt7 mutants alone or in combination with sid2-1, a mutation that severely depletes pathogen-induced SA production, points to SA-independent functions of FMO1 and NUDT7 in EDS1-conditioned disease resistance and cell death. We find instead that SA antagonizes initiation of cell death and stunting of growth in nudt7 mutants. 相似文献
12.
This study investigated the fitness effects of four mutations (npr1, cpr1, cpr5, and cpr6) and two transgenic genotypes (NPR1-L and NPR1-H) affecting different points of the systemic acquired resistance (SAR) signaling pathway associated with pathogen defense in Arabidopsis thaliana. The npr1 mutation, which resulted in a failure to express SAR, had no effect on fitness under growth chamber conditions, but decreased fitness in the field. The expression of NPR1 positively correlated with the fitness in the field. Constitutive activation of SAR by cpr1, cpr5, and cpr6 generally decreased fitness in the field and under two nutrient levels in two growth chamber conditions. At low-nutrient levels, fitness differences between wild type and the constitutive mutants were unchanged or reduced (especially in cpr5). The reduced fitness of the constitutive mutants suggests that this pathway is costly, with the precise fitness consequences highly dependent on the environmental context. 相似文献
13.
Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action 总被引:8,自引:0,他引:8
Yoshioka K Nakashita H Klessig DF Yamaguchi I 《The Plant journal : for cell and molecular biology》2001,25(2):149-157
Probenazole (PBZ; 3-allyloxy-1,2-benzisothiazole-1,1-dioxide), which is the active ingredient in Oryzemate, has been used widely in Asia to protect rice plants against the rice blast fungus Magnaporthe grisea. To study PBZ's mode of action, we analyzed its ability, as well as that of its active metabolite 1, 2-benzisothiazol-3 (2H)-one 1,1-dioxide (BIT) to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with PBZ or BIT exhibited increased expression of several pathogenesis-related genes, increased levels of total salicylic acid (SA), and enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC 3000 and the oomycete pathogen Peronospora parasitica Emco5. The role of several defense signaling hormones, such as SA, ethylene and jasmonic acid (JA), in activating resistance following PBZ or BIT treatment was analyzed using NahG transgenic plants and etr1-1 and coi1-1 mutant plants, respectively. In addition, the involvement of NPR1, a key component in the SA signaling pathway leading to defense responses, was assessed. PBZ or BIT treatment did not induce disease resistance or PR-1 expression in NahG transgenic or npr1 mutant plants, but it did activate these phenomena in etr1-1 and coi 1-1 mutant plants. Thus SA and NPR1 appear to be required for PBZ- and BIT-mediated activation of defense responses, while ethylene and JA are not. Furthermore, our data suggest that PBZ and BIT comprise a novel class of defense activators that stimulate the SA/NPR1-mediated defense signaling pathway upstream of SA. 相似文献
14.
Fitness benefits of systemic acquired resistance during Hyaloperonospora parasitica infection in Arabidopsis thaliana 下载免费PDF全文
We investigated the fitness benefits of systemic acquired resistance (SAR) in Arabidopsis thaliana using a mutational and transformational genetic approach. Genetic lines were designed to differ in the genes determining resistance signaling in a common genetic background. Two mutant lines (cpr1 and cpr5) constitutively activate SAR at different points in SAR signaling, and one mutant line (npr1) has impaired SAR. The transgenic line (NPR1-H) has enhanced resistance when SAR is activated, but SAR is still inducible similarly to wild type. The fitness benefits were also investigated under two nutrient levels to test theories that preventing pathogen damage and realized resistance benefits may be affected by nutrient availability. Under low-nutrient conditions and treatment with the pathogenic oomycete, Hyaloperonospora parasitica, wild type had a higher fitness than the mutant that could not activate SAR, demonstrating that normal inducible SAR is beneficial in these conditions; this result, however, was not found under high-nutrient conditions. The mutants with constitutive SAR all failed to show a fitness benefit in comparison to wild type under a H. parasitica pathogen treatment, suggesting that SAR is induced to prevent an excessive fitness cost. 相似文献
15.
16.
Pga1 is an essential component of Glycosylphosphatidylinositol-mannosyltransferase II of Saccharomyces cerevisiae 总被引:1,自引:0,他引:1 下载免费PDF全文
The Saccharomyces cerevisiae essential gene YNL158w/PGA1 encodes an endoplasmic reticulum (ER)-localized membrane protein. We constructed temperature-sensitive alleles of PGA1 by error-prone polymerase chain reaction mutagenesis to explore its biological role. Pulse-chase experiments revealed that the pga1(ts) mutants accumulated the ER-form precursor of Gas1 protein at the restrictive temperature. Transport of invertase and carboxypeptidase Y were not affected. Triton X-114 phase separation and [(3)H]inositol labeling indicated that the glycosylphosphatidylinositol (GPI)-anchoring was defective in the pga1(ts) mutants, suggesting that Pga1 is involved in GPI synthesis or its transfer to target proteins. We found GPI18, which was recently reported to encode GPI-mannosyltransferase II (GPI-MT II), as a high-copy suppressor of the temperature sensitivity of pga1(ts). Both Gpi18 and Pga1 were detected in the ER by immunofluorescence, and they were coprecipitated from the Triton X-100-solubilized membrane. The gpi18(ts) and pga1(ts) mutants accumulated the same GPI synthetic intermediate at the restrictive temperature. From these results, we concluded that Pga1 is an additional essential component of the yeast GPI-MT II. 相似文献
17.
Nakagawa S Ip JY Shioi G Tripathi V Zong X Hirose T Prasanth KV 《RNA (New York, N.Y.)》2012,18(8):1487-1499
Malat1 is an abundant long, noncoding RNA that localizes to nuclear bodies known as nuclear speckles, which contain a distinct set of pre-mRNA processing factors. Previous studies in cell culture have demonstrated that Malat1 interacts with pre-mRNA splicing factors, including the serine- and arginine-rich (SR) family of proteins, and regulates a variety of biological processes, including cancer cell migration, synapse formation, cell cycle progression, and responses to serum stimulation. To address the physiological function of Malat1 in a living organism, we generated Malat1-knockout (KO) mice using homologous recombination. Unexpectedly, the Malat1-KO mice were viable and fertile, showing no apparent phenotypes. Nuclear speckle markers were also correctly localized in cells that lacked Malat1. However, the cellular levels of another long, noncoding RNA--Neat1--which is an architectural component of nuclear bodies known as paraspeckles, were down-regulated in a particular set of tissues and cells lacking Malat1. We propose that Malat1 is not essential in living mice maintained under normal laboratory conditions and that its function becomes apparent only in specific cell types and under particular conditions. 相似文献
18.
Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway 总被引:12,自引:6,他引:12
Kay A. Lawton Leslie Friedrich Michelle Hunt Kris Weymann Terrance Delaney Helmut Kessmann Theodor Staub John Ryals 《The Plant journal : for cell and molecular biology》1996,10(1):71-82
Benzothiadiazole (BTH) is a novel chemical activator of disease resistance in tobacco, wheat and other important agricultural plants. In this report, it is shown that BTH works by activating SAR in Arabidopsis thaliana. BTH-treated plants were resistant to infection by turnip crinkle virus, Pseudomonas syringae pv ‘tomato’ DC3000 and Peronospora parasitica. Chemical treatment induced accumulation of mRNAs from the SAR-associated genes, PR-1, PR-2 and PR-5. BTH treatment induced both PR-1 mRNA accumulation and resistance against P. parasitica in the ethylene response mutants, etr1 and ein2, and in the methyl jasmonate-insensitive mutant, jar1, suggesting that BTH action is independent of these plant hormones. BTH treatment also induced both PR-1 mRNA accumulation and P. parasitica resistance in transgenic Arabidopsis plants expressing the nahG gene, suggesting that BTH action does not require salicylic acid accumulation. However, because BTH-treatment failed to induce either PR-1 mRNA accumulation or P. parasitica resistance in the non-inducible immunity mutant, nim1, it appears that BTH activates the SAR signal transduction pathway. 相似文献
19.
20.
Dutcher SK Morrissette NS Preble AM Rackley C Stanga J 《Molecular biology of the cell》2002,13(11):3859-3869
Centrioles and basal bodies are cylinders composed of nine triplet microtubule blades that play essential roles in the centrosome and in flagellar assembly. Chlamydomonas cells with the bld2-1 mutation fail to assemble doublet and triplet microtubules and have defects in cleavage furrow placement and meiosis. Using positional cloning, we have walked 720 kb and identified a 13.2-kb fragment that contains epsilon-tubulin and rescues the Bld2 defects. The bld2-1 allele has a premature stop codon and intragenic revertants replace the stop codon with glutamine, glutamate, or lysine. Polyclonal antibodies to epsilon-tubulin show peripheral labeling of full-length basal bodies and centrioles. Thus, epsilon-tubulin is encoded by the BLD2 allele and epsilon-tubulin plays a role in basal body/centriole morphogenesis. 相似文献