首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theremarkableabilityofhumantumornecrosisfactor(hTNF-a)istokillmanymalignantcelllinesinvitroorinvivoselectivelyandhavealmostnotoxicityfornormaltissuecells[1,2].However,manysideeffectsofhTNF-ainclinictrialshaveseverelylimiteditsapplicationincancertreatment[3].Recently,alotofworkhasbeendoneforimprovinghTNF-abymeansofproteinengineeringtoobtainnovelhTNF-amutantswithhighcytotoxcityandreducedsystematictoxicity.Yamagishietal.pointedoutthattheessentialfourregionsformaintainingtheactivityofhTNF-aw…  相似文献   

2.
Growth of Escherichia coli is inhibited upon exposure to a large volume of a harmful solvent, and there is an inverse correlation between the degree of inhibition and the log P(OW) of the solvent, where P(OW) is the partition coefficient measured for the partition equilibrium established between the n-octanol and water phases. The AcrAB-TolC efflux pump system is involved in maintaining intrinsic solvent resistance. We inspected the solvent resistance of delta acrAB and/or delta tolC mutants in the presence of a large volume of solvent. Both mutants were hypersensitive to weakly harmful solvents, such as nonane (log P(OW) = 5.5). The delta tolC mutant was more sensitive to nonane than the delta acrAB mutant. The solvent entered the E. coli cells rapidly. Entry of solvents with a log P(OW) higher than 4.4 was retarded in the parent cells, and the intracellular levels of these solvents were maintained at low levels. The delta tolC mutant accumulated n-nonane or decane (log P(OW) = 6. 0) more abundantly than the parent or the delta acrAB mutant. The AcrAB-TolC complex likely extrudes solvents with a log P(OW) in the range of 3.4 to 6.0 through a first-order reaction. The most favorable substrates for the efflux system were considered to be octane, heptane, and n-hexane.  相似文献   

3.
Although enzymes are potential candidates for industrial catalysts, their industrial applications have been limited because they are easily deactivated under harsh operational conditions. In this study, a plasmid display system was used for the screening of stable cutinase in organic solvent (20% acetonitrile) and at high temperature. The fusion proteins were expressed and bound to specific DNA sequences on the encoding plasmids. Proteolysis resistance was used as a selection tool, where well-folded proteins are more resistant to the protease digestion than poorly-folded proteins. Stable mutants, identified to be I183T, I183F, and A56V, were screened in the organic solvent and at high temperature. The I183T and I183F mutants were more stable than the A56V mutant in 20% acetonitrile, while the A56V mutant was superior to the I183T and I183F mutants at high temperature. Molecular modeling was performed in order to investigate the residual characteristics of the stable mutants; secondary structure, residual solvation energy, residual ??-carbon flexibility, number of hydrogen bonds, number of neighboring amino acids, ratio of exposed/buried residue, and surface area. This analysis provided some guidelines for increased stability.  相似文献   

4.
The survival of 11 species of Gram-negative and Gram-positive bacteria was examined on different surfaces exposed to desiccation. There were large variations between species; Pseudomonas spp. and Rhizobium leguminosarum biovars survived for less than 2 d, whilst Enterococcus spp. survived for more than 11 weeks. The type of surface on to which the bacteria were deposited affected survival, but with different effects between species. In addition the survival of spontaneous nalidixic acid-resistant (Nal-r) mutants of a natural Escherichia coli isolate were compared. Overall the differences were slight, but of seven resistant mutants, five survived better than the parent whilst one survived less well. Nine transposon insertion derivatives of one of the Nal-r mutants (ECO80) which survived better than the parent were compared; all survived similarly to the parent except ECO883 which survived less well. The growth characteristics of ECO883 and ECO80 were compared; at high osmotic pressures (>0.4 mol l-1 NaCl) ECO883 grew more slowly and showed a longer lag time than the parent. Of the osmoregulatory functions studied, ECO883 appeared to be altered with respect to K+ transport or accumulation, although the transposon insertion had occurred in a gene distant from known K+ transport genes.  相似文献   

5.
Two types of Escherichia coli mutants tolerant to beta-lactam antibiotics were isolated. One is E. coli chi2452, which showed a tolerant response against beta-lactam antibiotics when grown at 42 degrees C, and the others are the mutants C-80 and C-254, selected from mutagenized E. coli chi1776 by cycles of exposure to ampicillin, cephaloridine, and starvation of the nutritionally required diaminopimelic acid. Beta-lactam antibiotics caused rapid loss of viability and lysis in cultures of chi1776 or in chi2452 grown at 32 degrees C. In contrast, the same antibiotics caused only a reversible inhibition of growth in mutants C-80 and C-254 or in cultures of chi2452 grown at 42 degrees C. Beta-lactam antibiotics that show high affinity for penicillin-binding proteins 2 or 3 (mecillinam and cephalexin, respectively) induced similar morphological effects (ovoid cell formation and filament formation) in both parent and mutant strains. In contrast, beta-lactam antibiotics which have a high affinity for penicillin-binding protein 1 (e.g., cephaloridine or cefoxitin), which cause rapid lysis in the parental strains, caused cell elongation in the tolerant bacteria. In contrast to the parental cells, autolytic cell wall degradation was not triggered by beta-lactam treatment of chi2452 cells grown at 42 degrees C or in mutants C-80 and C-254. The total autolytic activity of mutants C-80 and C-254 was less than 30% that of the parent strain. However, virtually identical autolytic activities were found in cells of chi2452 grown either at 42 or 32 degrees C. Possible mechanisms for the penicillin tolerance of E. coli are considered on the basis of these findings.  相似文献   

6.
Energy-transducing adenosine triphosphatase (ATPase) from Escherichia coli is inhibited by aurovertin. Aurovertin-resistant mutants were generated by nitrosoguanidine mutagenesis of E. coli AN180, whose growth on a nonfermentable carbon source was blocked by aurovertin. The ATPase activity of cell extracts from 15 different mutants (designated MA1, MA2, MA3, etc.) was found to be at least 20 times less sensitive to aurovertin than that from the parent strain. The aurovertin-resistant mutants did not show cross-resistance towards a number of ATPase inhibitors including azide, dicyclohexylcarbodiimide, quercetin, 7-chloro-4-nitrobenzofurazan, and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Aurovertin inhibited the energization brought about by addition of ATP to E. coli AN180 membrane vesicles; it was without effect on MA1 and MA2 membrane vesicles energized by ATP. The mutation in MA1, like other mutations of the ATPase complex, maps in the unc region of the bacterial chromosome.  相似文献   

7.
Class II ampicillin-resistant mutants of Escherichia coli are defined as having a twofold increase in penicillinase-mediated ampicillin resistance when determined by colony formation tests on plates. In this paper, one class II mutant has been compared to its parent strain. In liquid medium, the mutant was less resistant than the parent strain both in the absence and in the presence of R1 and R-factor mediating penicillinase activity. The penicillinase activity was found to be almost completely bound to the cells in the parent strain, whereas it was excreted to a great extent in the class II mutant strain. In liquid medium, resistance was well correlated to the cell-bound penicillinase activity, whereas the excreted penicillinases were also of great importance for survival on ampicillin plates. The mutant also had a changed resistance to a great number of other antibacterial drugs. The mutant was found to be more sensitive than the parent strain to osmotic shock, especially when treated with ethylenediaminetetraacetic acid or washed with sodium ions. However, the osmotic stability was restored by the presence of 1 mm Mg(2+) ions. The class II mutant was more sensitive than the parent strain to sodium cholate, and it adsorbed the phages T4 and T3-1 at a slower rate than did the parent strain. The two strains adsorbed T6 at the same rate. The class II phenotype could be gradually reversed by increasing concentrations of divalent cations. The pleiotropic changes in the phenotype are apparently unrelated to the specific targets for the antibacterial agents tested. They are secondary consequences of a cell envelope mutation. The findings indicate that the class II mutation mediates a structural change in the lipopolysaccharide of the cell envelope.  相似文献   

8.
Aims: To investigate the involvement of osmoprotectant transporters in organic solvent tolerance in Escherichia coli and to construct an E. coli strain with high organic solvent tolerance. Methods and Results: The organic solvent tolerance of ΔbetT, ΔproV, ΔproP or ΔputP single‐gene knockout mutants of E. coli K‐12 strain was examined. Among these mutants, the organic solvent tolerance of the ΔproV mutant remarkably increased compared with that of the parent strain. It has been known that a marR mutation confers tolerance on E. coli to organic solvents. A ΔproV and ΔmarR double‐gene mutant was more tolerant to organic solvents than the ΔproV or ΔmarR single‐gene mutant. The n‐hexane amount accumulated in E. coli cells was examined after incubation in an n‐hexane‐aqueous medium two‐phase system. The intracellular n‐hexane level in the ΔproV and ΔmarR double‐gene mutant was kept lower than those of the parent strain, ΔproV mutant and ΔmarR mutant. Conclusions: The organic solvent tolerance level in E. coli highly increased by dual disruption of proV and marR. Significance and Impact of the Study: This study suggests a new strategy for increasing the organic solvent tolerance level in E. coli to improve the usability of the whole‐cell biocatalysts in two‐phase systems employing organic solvents.  相似文献   

9.
Two ultraviolet light (UV)-sensitive mutants have been isolated from Escherichia coli K-12. These mutants, designated RuvA(-) and RuvB(-), were controlled by a gene located close to the his gene on the chromosome map. They were sensitive to UV (10- to 20-fold increase) and slightly sensitive to gamma rays (3-fold increase). Host cell reactivation, UV reactivation and genetic recombination were normal in these mutants. Irradiation of the mutants with UV resulted in the production of single-strand breaks in deoxyribonucleic acid, which was repaired upon incubation in a growth medium. After UV irradiation, these mutants resumed deoxyribonucleic acid synthesis at a normal rate, as did the parent wild-type bacteria, and formed nonseptate, multinucleate filaments. From these results we concluded that the mutants have some defect in cell division after low doses of UV irradiation, similar to the lon(-) or fil(+) mutant of E. coli. The ruv locus was divided further into ruvA and ruvB with respect to nalidixic acid sensitivity and the effect of minimal agar or pantoyl lactone on survival of the UV-irradiated cell. The ruvB(-)mutant was more sensitive to nalidixic acid than were ruvA(-) and the parent strain. There was a great increase in the surviving fraction of the UV-irradiated ruvB(-) mutant when it was plated on minimal agar or L agar containing pantoyl lactone. No such increase in survival was observed in the ruvA(-) mutant.  相似文献   

10.
Enzymatic reactions conducted in organic solvents have many advantages. However, organic solvent molecules may replace water molecules at the protein surface and penetrate into the enzyme, which could lead to the denaturation of the enzyme or changes in its reaction kinetics and substrate specificity. Thus, it is important to enhance the stability of enzymes in organic solvents. To date, there has been no efficient rational approach developed to enhance enzyme stability in hydrophilic solvents. We developed a rational approach to enzyme design. The design rules were established by investigating stable mutants from previous studies of directed evolution. Candida antarctica lipase B (CalB) was used as a target enzyme due to its versatile applications in organic solvents. The N97Q, N264Q, and D265E mutants of CalB showed higher organic solvent stability than the wild type.  相似文献   

11.
Abstract We measured the mannose-specific adherence of radiolabeled Escherichia coli , carrying type 1 fimbriae, to monolayers of wild-type baby hamster kidney (BHK) cells and to 3 ricin-resistant mutants defective in the synthesis of complex N -linked oligosaccharide units. RicR14, a mutant accumulating N-linked oligomannose units in its glycoproteins at the expense of complex ( N -acetyllactosamine) units, bound the largest number of bacteria, about 4 times more than the wild-type cells. The mutant cells in suspension were also readily agglutinated by the bacteria, while no agglutination of wild-type cells occurred under the conditions used. RicR21, a mutant which accumulates hybrid structures, bound about twice as many bacteria as wild-type cells, and was agglutinated by the bacteria to a lesser extent than RicR14. Binding and agglutination of RicR19, also presumed to accumulate hybrid structures, were the same as those of RicR14. These results provide evidence that oligomannose and hybrid units of cell surface glycoproteins serve as preferred receptors for mannose-specific E. coli. Lectin-resistant mutants are therefore useful for the investigation of sugar-specific adherence.  相似文献   

12.
In previous work we have shown that some bacteria can bind to human lymphocytes and can be used to identify lymphocyte subpopulations in conventionally stained blood smears. These bacteria are of different species or genera, which makes it difficult to study the binding mechanism. Also, the main marker for B cells, Brucella melitensis, is of very small size and highly pathogenic. Here we show that B cells as well as some of the T cell subpopulations can be identified by different mutants obtained from a strain of an Escherichia coli. Two procedures were used to generate mutants. First, E. coli-YS57 (pro-his-trp-) was mutagenized with N-methyl-N'-nitro-N-nitrosoguanidine and the binding to mouse spleen cells was used as a selective pressure. Second, phage-resistant mutants of E. coli-YS57 were obtained and tested for the ability to bind to lymphocytes. Out of 10 strains selected by the former procedure, 5 bound to a significant number of human lymphocytes. All four phage-resistant mutants bound to human lymphocytes. Out of the total of nine mutants that bound to lymphocytes, six bound consistently, i.e., they bound to similar percentages of peripheral blood lymphocytes from different normal donors. One phage-resistant mutant, E. coli USC-106, bound only to B cells. The subpopulations of lymphocytes identified by the mutants were essentially the same as those identified by different species or genera of bacteria. We concluded that E. coli mutants can be obtained that identify human lymphocyte subpopulations and that one of these mutants recognizes B cells; these mutants may be used to study the nature of the receptors for bacteria on lymphocytes, which appear to have a lectin-like nature.  相似文献   

13.
Abstract Mutants unable to use ethanol for carbon and energy were counterselected from an ethanolutilizing mutant of Escherichia coli K12 derepressed for alcohol dehydrogenase (ADH). Mutants of one class were devoid of ADH activity under anaerobic conditions but exhibited aerobic activities comparable to those of wild-type E. coli. Mutants of a second class exhibited ADH activity levels intermediate between those of the wild-type and derepressed parent. Immunological studies showed that mutants of the former class synthesized far less ADH protein than did the derepressed parent while mutants of the latter class synthesized about the same amount. The ADH mutations in both classes were located within the previously described adh region which contains the structural gene for the activity that is derepressed in the parent. An Eth adh-lac fusion mutant with an insertion in the structural gene was also isolated and characterized. It exhibited no ADH activity under anaerobic conditions and wild-type levels under aerobic conditions. These data are consistent with the existence in E. coli of distinct aerobic and anaerobic ADH enzymes and a derepression of the anaerobic but not the aerobic enzyme in the ethanol utilizing strain.  相似文献   

14.
Escherichia coli K-12 minicells, harboring recombinant plasmids encoding polypeptides involved in the expression of K88ac adhesion pili on the bacterial cell surface, were labeled with [35S]methionine and fractionated by a variety of techniques. A 70,000-dalton polypeptide, the product of the K88ac adhesion cistron adhA, was primarily located in the outer membrane of minicells, although it was less clearly associated with this membrane than the classical outer membrane proteins OmpA and matrix protein. Two polypeptides of molecular weights 26,000 and 17,000 (the products of adhB and adhC, respectively) were located in significant amounts in the periplasmic space. The 29,000-dalton polypeptide was shown to be processed in E. coli minicells. The 23.500-dalton K88ac pilus subunit (the product of adhD) was detected in both inner and outer membrane fractions. E. coli mutants defective in the synthesis of murein lipoprotein or the major outer membrane polypeptide OmpA were found to express normal amounts of K88ac antigen on the cell surface, whereas expression of the K88ac antigen was greatly reduced in perA mutants. The possible functions of the adh cistron products are discussed.  相似文献   

15.
Sperm whale myoglobin mutants were constructed using site-directed mutagenesis to replace the highly conserved distal histidine residue (His(E7)-64). His-64 was substituted with Gly, Val, Phe, Cys, Met, Lys, Arg, Asp, Thr, and Tyr, and all 10 mutant proteins expressed to approximately 10% of the total soluble cell protein in Escherichia coli as heme containing myoglobin. With the exception of His-64----Tyr, which did not form a stable oxygen (O2) complex, all mutant proteins could be reduced and bound O2 and carbon monoxide (CO) reversibly. However, removal of the distal histidine increased the rate of autooxidation 40-350-fold. The His-64----Gly, Val, Phe, Met, and Arg mutants all showed markedly increased O2 dissociation rate constants which were approximately 50-1500-fold higher than those for wild-type myoglobin and increased O2 association rate constants which were approximately 5-15-fold higher than those for the native protein. All mutants studied (except His-64----Tyr) showed approximately 10-fold increased CO association rates and relatively unchanged CO dissociation rates. These altered O2 and CO association and dissociation rate constants resulted in 3-14-fold increased CO affinities, 10-200-fold decreased O2 affinities, and 50-380-fold greater M (KCO/KO2) values for the mutants compared to the wild-type protein. Thus, the distal histidine of myoglobin discriminates between CO and O2 binding by both sterically hindering bound CO and stabilizing bound O2 through hydrogen bonding. The increased autooxidation rates observed for the mutants appear to be due to a decrease in oxygen affinity and an increase in solvent anion accessibility to the distal pocket.  相似文献   

16.
We studied the reactivity of 66 anti-Escherichia coli B/r porin monoclonal antibodies (MAbs) with several E. coli and Salmonella typhimurium strains. Western immunoblots showed complete immunological cross-reactivity between E. coli B/r and K-12; among 34 MAbs which recognized porin in immunoblots of denatured outer membranes of E. coli B/r, all reacted with OmpF in denatured outer membranes of E. coli K-12. Extensive reactivity, although less than that for strain B/r (31 of 34 MAbs), occurred for porin from a wild-type isolate, E. coli O8:K27. Only one of the MAbs reacted with porin in denatured outer membranes of S. typhimurium. Even with immunochemical amplification of the Western immunoblot technique, only six MAbs recognized S. typhimurium porin (OmpD), demonstrating that there is significant immunological divergence between the porins of these species. Antibody binding to the bacterial surface, which was analyzed by cytofluorimetry, was strongly influenced by lipopolysaccharide (LPS) structure. An intact O antigen, as in E. coli O8:K27, blocked adsorption of all 20 MAbs in the test panel. rfa+ E. coli K-12, without an O antigen but with an intact LPS core, bound seven MAbs. When assayed against a series of rfa E. coli K-12 mutants, the number of MAbs that recognized porin surface epitopes increased sequentially as the LPS core became shorter. A total of 17 MAbs bound porin in a deep rough rfaD strain. Similar results were obtained with S. typhimurium. None of the anti-E. coli B/r porin MAbs adsorbed to a smooth strain, but three antibodies recognized porin on deep rough (rfaF, rfaE) mutants. These data define six distinct porin surface epitopes that are shielded by LPS from reaction with antibodies.  相似文献   

17.
Escherichia coli strains of group O111 were characterized with respect to sensitivity to complement killing, amount of lipopolysaccharide and O antigen-containing capsule, and distribution of O antigen. All wild-type E. coli O111 strains were resistant to complement killing in the absence of specific antibody. Presensitization of strains with antibody to whole cells (OK antibody), followed by incubation in 50% pooled normal human serum as a source of complement, subdivided wild-type strains into three types: completely resistant, partially resistant, and sensitive. Completely and partially resistant mutants were isolated by cycles of serum killing, starting with one sensitive strain. Completely resistant mutants had no O antigen-containing capsule, but had 50% more lipopolysaccharide than did the parent, and this lipopolysaccharide had 30% fewer lipid A core molecules devoid of O antigen. Partially resistant mutants still had O antigen-containing capsule, but contained 40% more lipopolysaccharide than did the parent; the extent of coverage of lipid A core with O antigen remained unchanged. No correlations were found between outer membrane protein composition and the degree of serum resistance. Since the terminal membrane attack complex (C5b-9) must stably insert into a hydrophobic membrane site to effect killing, we conclude that both increased lipid A core and increased coverage of lipid A core with O antigen preclude access of C5b-9 to lethal sites on the cell surface.  相似文献   

18.
Chinese hamster ovary cell lines with specific lesions in the formation of glycoconjugates were tested for their sensitivity to lysis by interferon-boosted human natural killer cells. We report here that the type of asparagine-linked carbohydrate present on target cell glycoproteins determines their susceptibility to natural killer lysis. The targets tested were Chinese hamster ovary parent cells and Lec1, Lec2, and Lec8 mutants. Lec8 and Lec2 cells show an overall reduction of galactose and/or sialic acid in their glycoconjugates due to defects in the translocation of UDP-galactose and CMP-sialic acid, respectively. Due to a specific block in N-linked carbohydrate processing, Lec1 cells produce only high mannose-type oligosaccharides, but their glycolipids are identical to those of the parent. Both Lec2 and Lec8 mutants are more sensitive to natural killer lysis than the parent cells. This is consistent with their extensive reduction in cell surface sialic acid. Furthermore, Lec1 mutants are more susceptible to natural killer lysis than the parent cells. To confirm that the increased natural killer sensitivity of Lec1 cells was due to the modification of N-linked carbohydrate, parent cells were treated with swainsonine, a specific inhibitor of N-linked oligosaccharide processing. Swainsonine-treated parent cells are nearly as sensitive to natural killer lysis as the Lec1 mutants.  相似文献   

19.
Morphological mutants of Micrococcus lysodeikticus (luteus) were isolated by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. They occurred on plates in large, regular cell packets, whereas the parent cells usually grew as groups of two or four cells or as short chains. The mutants required a much higher concentration of Mg2+ for growth than the parent cells. The concentrations of Mg2+ and other components of the culture medium tested did not significantly affect the morphology of either the parent or mutant strains. The mutant strains were not agglutinated by antiserum to M. lysodeikticus, which mainly interacts with teichuronic acid on the cell surface, and chemical analysis of isolated cell walls of the mutants indicated the absence of teichuronic aicd. No significant differences were detected between the parent and mutant strains in the amounts of other cell wall components, e.g., peptidoglycan, protein, and teichoic acid. They possible roles of teichuronic acid in cell separation and attachment of divalent cations are discussed.  相似文献   

20.
大肠杆菌ptsG基因敲除及其缺陷株生长特性研究   总被引:8,自引:1,他引:8  
在大肠杆菌磷酸转移酶系统中,葡萄糖主要由ptsG基因编码的酶ⅡCB^Glc转运入细胞。利用代谢工程技术构建ptsG基因缺陷株,有望降低葡萄糖的摄取速率,减少乙酸累积,促进菌体生长。运用PCR技术,扩增出两翼与ptsG基因上下游序列同源,中间为氯霉素抗性基因的DNA片段。经电转化,将外源DNA片段分别转入Escherichia coli DH5a、JM109中。在Red重组酶的作用下,外源DNA片段与染色体上同源区域重组,将基因ptsG敲除,构建ptsG基因缺陷株:DH5αP,JM109P。在LB培养基中,ptsG基因缺陷株的生长状况与亲株无明显差异。在含有葡萄糖的LB培养基中,DH5αP、JM109P的最高菌密度分别是对照菌株DH5α,JM109的3.47倍和4.25倍,ptsG基因缺陷株对葡萄糖的摄入量也明显高于对照菌株。重组蛋白肿瘤坏死因子(TNF)在DH5αP、JM109P中的表达量分别占全菌蛋白的24.3%、20.8%,A600分别为8.28、7.62,TNF在缺陷株中单位体积的表达量明显高于对照菌株。以上结果说明,大肠杆菌ptsG基因缺陷株具有良好的生长能力和表达外源蛋白的能力,在大肠杆菌高密度发酵研究方面具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号