首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP-binding-cassette transporter A1 (ABCA1) plays an essential role in cellular cholesterol efflux and helps prevent macrophages from becoming foam cells. The statins are widely used as cholesterol-lowering agents and have other anti-atherogenic actions. We tested the effects of four different statins (fluvastatin, atorvastatin, simvastatin, and lovastatin) on ABCA1 expression in macrophages in vitro. The statins suppressed ABCA1 mRNA expression in RAW246.7 and THP-1 macrophage cell lines and in mouse peritoneal macrophages. The effect was time- and dose-dependent and was abolished by the addition of the post-reductase product, mevalonate. These findings imply that there is a possible modulation of the well-known beneficial effects of the statins on the reverse cholesterol transport pathway.  相似文献   

2.
3.
Conjugated linoleic acid (CLA) is a mixture of dietary fatty acids that has various beneficial effects including decreasing cancer, atherosclerosis, diabetes and inflammation in animal models. Some controversy exists on the specific isomers of CLA that are responsible for the benefits observed. This study was conducted to examine how different CLA isomers regulate gene expression in RAW 264.7. A mouse macrophage cell line, RAW 264.7, was treated with five different CLA isomers (9E,11E-, 9Z,11E-, 9Z,11Z-, 10E,12Z- and 11Z,13E-CLA). Gene expression microarrays were performed, and several significantly regulated genes of interest were verified by a real-time polymerase chain reaction (PCR). Examination of the biological functions of various significantly regulated genes by the five CLA isomers showed distinct properties. Isomers 9E,11E-, 9Z,11Z-, 10E,12Z- and 11Z,13E-CLA decreased production of proinflammatory cytokines such as interleukin (IL)-1α, IL-1β and IL-6. Many of CLA's effects are believed to be mediated by the fatty acid receptors such as the peroxisome proliferator-activated receptors (PPAR) and retinoid-X-receptors (RXR). Using PPAR and RXR specific antagonists and coactivator recruitment assays, it was evident that multiple mechanisms were responsible for gene regulation by CLA isomers. Coactivator recruitment by CLA isomers showed their distinct properties as selective receptor modulators for PPARγ and RXRα. These studies demonstrate distinct isomer differences in gene expression by CLA and will have important ramifications for determining the potential therapeutic benefit of these dietary fatty acids in prevention of inflammation-related diseases.  相似文献   

4.
5.
The human myeloperoxidase gene is regulated by LXR and PPARalpha ligands   总被引:4,自引:0,他引:4  
Myeloperoxidase (MPO) is an oxidant-generating enzyme expressed in macrophages and implicated in atherosclerosis and cholesterol homeostasis. LXRalpha and PPARalpha regulate genes involved in cholesterol metabolism and the inflammatory response in macrophages. Here, we examine the effect of LXR and PPARalpha ligands on MPO expression. LXR and PPARalpha, as heterodimers with RXR, are shown to bind overlapping sites in an Alu receptor response element (AluRRE) in the MPO promoter. The LXR ligand T0901317 suppresses MPO mRNA expression in primary human macrophages, and in bone marrow cells and macrophages from huMPO transgenic mice. The PPARalpha ligand GW9578 downregulates MPO expression in GMCSF-macrophages, while upregulating in MCSF-macrophages. In contrast, the mouse MPO gene, which lacks the primate-specific AluRRE, is not regulated by LXR or PPARalpha ligands. These findings identify human MPO as a novel LXR and PPARalpha target gene, consistent with the role of these receptors in regulation of proinflammatory genes in macrophages.  相似文献   

6.
Abundant expression of thromboxane synthase in rat macrophages   总被引:1,自引:0,他引:1  
《FEBS letters》1994,340(3):241-244
The cloned cDNA for rat thromboxane (TX) synthase with a size of 1851 bp contained a 1599-bp open reading frame which encoded a 533-amino acid protein sharing 79.7% identity with human TX synthase. RNA blot analysis was carried out with rat cells and tissues. Rat peritoneal macrophages most abundantly expressed mRNA for TX synthase, and its level was not changed by in vivo stimulation of casein. Bone marrow, spleen, lung and thymus also expressed the TX synthase gene. These findings suggest the possibility that TXA2 plays a role in the immune system.  相似文献   

7.
The aim of this study was to investigate the role of insulin receptor substrate-2 (IRS-2) mediated signal in macrophages on the accumulation of macrophages in the vascular wall. Mice transplanted with IRS-2−/− bone marrow, a model of myeloid cell restricted defect of IRS-2, showed accumulation of monocyte chemoattractant protein-1-expressing macrophages in the vascular wall. Experiments using cultured peritoneal macrophages showed that IRS-2-mediated signal pathway stimulated by physiological concentrations of insulin, not by IL-4, contributed to the suppression of monocyte chemoattractant protein-1 expression induced by lipopolysaccharide. Our data indicated that IRS-2 deficiency in macrophages enhanced their accumulation in the vascular wall accompanied by increased expression of proinflammatory mediators in macrophages. These results suggest a role for insulin resistance in macrophages in early atherosclerogenesis.  相似文献   

8.
Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.  相似文献   

9.
beta-Amyloid peptide (A beta), a major component of senile plaques, the formation of which is characteristic of Alzheimer's disease (AD), is believed to induce inflammation of the brain mediated by microglia, leading to neuronal cell loss. In this study, we performed an oligonucleotide microarray analysis to investigate the molecular events underlying the A beta-induced activation of macrophages and its specific suppression by the A beta-specific-macrophage-activation inhibitor, RS-1178. Of the approximately 36,000 genes and expressed sequence tags analyzed, eight genes were specifically and significantly upregulated by a treatment with interferon gamma (IFN gamma) and A beta compared to a treatment with IFN gamma alone (p<0.002). We found that the gene for a well-characterized lipogenetic enzyme, stearoyl coenzyme A desaturase-1 (SCD-1), was specifically upregulated by A beta treatment and was suppressed to basal levels by RS-1178. Although the underlying mechanisms remain unknown, our results suggest the presence of a link between AD and SCD-1.  相似文献   

10.
Accumulation of lipid metabolites within non-adipose tissues can induce chronic inflammation by promoting macrophage infiltration and activation. Oxidized and glycated lipoproteins, free fatty acids, free cholesterol, triacylglycerols, diacylglycerols and ceramides have long been known to induce cellular dysfunction through their pro-inflammatory and pro-apoptotic properties. Emerging evidence suggests that macrophage activation by lipid metabolites and further modulation by lipid signaling represents a common pathogenic mechanism underlying lipotoxicity in atherosclerosis, obesity-associated insulin resistance and inflammatory diseases related to metabolic syndrome such as liver steatosis and chronic kidney disease. In this review, we discuss the latest discoveries that support the role of lipids in modulating the macrophage phenotype in different metabolic diseases. We describe the common mechanisms by which lipid derivatives, through modulation of macrophage function, promote plaque instability in the arterial wall, impair insulin responsiveness and contribute to inflammatory liver, muscle and kidney disease. We discuss the molecular mechanism of lipid activation of pro-inflammatory pathways (JNK, NFκB) and the key roles played by the PPAR and LXR nuclear receptors—lipid sensors that link lipid metabolism and inflammation.  相似文献   

11.
12.
The expression of the ATP-binding cassette transporter ABCG1 is greatly increased in macrophages by cholesterol loading via the activation of the nuclear receptor LXR. Several recent studies demonstrated that ABCG1 expression is associated with increased cholesterol efflux from macrophages to high-density lipoprotein, suggesting an atheroprotective role for this protein. Our present study uncovers an as yet not described cellular function of ABCG1. Here we demonstrate that elevated expression of human ABCG1 is associated with apoptotic cell death in macrophages and also in other cell types. We found that overexpression of the wild type protein results in phosphatidyl serine (PS) translocation, caspase 3 activation, and subsequent cell death, whereas neither the inactive mutant variant of ABCG1 (ABCG1K124M) nor the ABCG2 multidrug transporter had such effect. Induction of ABCG1 expression by LXR activation in Thp1 cells and in human monocyte-derived macrophages was accompanied by a significant increase in the number of apoptotic cells. Thyroxin and benzamil, previously identified inhibitors of ABCG1 function, selectively prevented ABCG1-promoted apoptosis in transfected cells as well as in LXR-induced macrophages. Collectively, our results suggest a causative relationship between ABCG1 function and apoptotic cell death, and may offer new insights into the role of ABCG1 in atherogenesis.  相似文献   

13.
We used a combination of expression microarray and Northern blot analyses to identify target genes for peroxisome proliferator-activated receptor (PPAR) gamma in RAW264.7 macrophages. PPARgamma natural ligand 15-deoxy-Delta(12,14) prostaglandin and synthetic ligands ciglitazone and rosiglitazone increased the expression of scavenger receptor CD36 and ATP-binding cassette transporter A1, as well as adipophilin (a lipid droplet coating protein involved in intracellular lipid storage and transport), calpain (a protease implicated in ABCA1 protein degradation), and ADAM8 (a disintegrin and metalloprotease protein involved in cell adhesion). These findings are relevant to understanding the effect of PPARgamma activation on gene expression and cognate pathways in macrophages.  相似文献   

14.
Macrophages play a pivotal role in the development of atherosclerosis. After recruitment in the sub-endothelial space, monocytes differentiate into macrophages, accumulate lipids thus forming foam cells and secrete pro-inflammatory and matrix-degrading factors, thus playing a role in plaque development, inflammation and instability. Therefore, pharmacological modulation of macrophage functions represents an attractive strategy for the prevention and treatment of cardiovascular diseases caused by atherosclerosis.  相似文献   

15.
16.
17.
Alzheimer's disease is characterized by numerous amyloid-beta peptide (Abeta) plaques surrounded by microglia. Here we report that Abeta induces the proliferation of the mouse microglial cell line Ra2 by increasing the expression of macrophage colony-stimulating factor (M-CSF). We examined signal cascades for Abeta-induced M-CSF mRNA expression. The induction of M-CSF was blocked by a phosphatidylinositol 3 kinase (PI3-kinase) inhibitor (LY294002), a Src family tyrosine kinase inhibitor (PP1) and an Akt inhibitor. Electrophoretic mobility shift assays showed that Abeta enhanced NF-kappaB binding activity to the NF-kappaB site of the mouse M-CSF promoter, which was blocked by LY294002. These results indicate that Abeta induces M-CSF mRNA expression via the PI3-kinase/Akt/NF-kappaB pathway.  相似文献   

18.
19.
20.
In order to study the effects of vitamin C supplementation on gene expression and compare its action between physiological and inflammatory conditions, a pilot study was set up utilizing microarray and qPCR technologies. Five healthy volunteers were supplemented with 1 g vitamin C (Redoxon®) per day for five consecutive days. Peripheral blood mononuclear cells (PBMNC) were isolated before and just after the last supplementation, and RNA was isolated for the Affymetrix gene 1.0 ST chip analysis. PBMNC were also, ex vivo, treated with LPS, and gene expression was quantified by means of a “Human NFkB Signaling” qPCR array. Only a very moderate effect on the baseline gene expression modulation was associated with vitamin C supplementation. However, in spite of the limited number of subjects analyzed, vitamin C supplementation resulted in a markedly different modulation of gene expression upon the inflammatory stimulus, specifically at the level of the MyD88-dependent pathway and of the anti-inflammatory cytokine IL-10 synthesis. This study suggests that vitamin C supplementation in healthy subjects, not selected according to a specific genetic profile, consuming an adequate amount of vitamin C, and having a satisfactory vitamin C plasma concentration at the baseline, does not result in a significant modification of gene expression profile. Under this satisfactory micronutrient status, supplementation of vitamin C is “buffered” within a homeostatic physiological equilibrium. Differently, following a second “hit” constituted of an inflammatory stimulus such as LPS, able to trigger a critical burst to the normal physiological state, the higher availability of ascorbic acid emerges, and results in a significant modulation of cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号