首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
TCR signal transduction in antigen-specific memory CD8 T cells   总被引:4,自引:0,他引:4  
Memory T cells are more responsive to Ag than naive cells. To determine whether memory T cells also have more efficient TCR signaling, we compared naive, effector, and memory CD8 T cells of the same antigenic specificity. Surprisingly, initial CD3 signaling events are indistinguishable. However, memory T cells have more extensive lipid rafts with higher phosphoprotein content before TCR engagement. Upon activation in vivo, they more efficiently induce phosphorylation of-LAT (linker for activation of T cells), ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38. Thus, memory CD8 T cells do not increase their TCR sensitivity, but are better poised to augment downstream signals. We propose that this regulatory mechanism might increase signal transduction in memory T cells, while limiting TCR cross-reactivity and autoimmunity.  相似文献   

2.
The CD8 receptor plays a central role in the recognition and elimination of virally infected and malignant cells by cytolytic CD8(+) T cells. In conjunction with the TCR, the CD8 coreceptor binds Ag-specific class I MHC (MHC-I) molecules expressed by target cells, initiating signaling events that result in T cell activation. Whether CD8 can further function as an adhesion molecule for non-Ag MHC-I is currently unclear in humans. In this study, we show that in human CD8(+) T cells, TCR complex signaling activates CD8 adhesion molecule function, resulting in a CD8 interaction with MHC-I that is sufficient to maintain firm T cell adhesion under shear conditions. Secondly, we found that while CD8 adhesive function was triggered by TCR complex activation in differentiated cells, including in vitro generated CTL and ex vivo effector/memory phenotype CD8(+) T cells, naive CD8(+) T cells were incapable of activated CD8 adhesion. Lastly, we examine the kinetics of, and signaling for, activated CD8 adhesion in humans and identify notable differences from the equivalent CD8 function in mouse. Activated CD8 adhesion induced by TCR signaling may contribute to the more rapid and robust elimination of pathogen-infected cells by differentiated CD8(+) T cells.  相似文献   

3.
T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.  相似文献   

4.
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.  相似文献   

5.
Whereas increased affinity enhances T cell competitiveness after immunization, the role of affinity in modulating the pathogenicity of self-reactive T cells is less established. To assess this, we generated two myelin-specific, class II MHC-restricted TCR that differ only in a buried hydroxymethyl that forms a common TCR β-chain V region variant. The variation, predicted to increase TCR stability, resulted in a ~3log(10) difference in TCR sensitivity with preserved fine specificity. The high-affinity TCR markedly diminished T cell pathogenicity. T cells were not deleted, did not upregulate Foxp3, and barring disease induction were predominantly naive. However, high-affinity CD4(+) T cells showed an altered cytokine profile characterized by the production of protective cytokines prior to experimental allergic encephalomyelitis induction and decreased effector cytokines after. Further, the high-affinity TCR promoted the development of CD4(-)CD8(-) and CD8(+) T cells that possessed low intrinsic pathogenicity, were protective even in small numbers when transferred into wild-type mice and in mixed chimeras, and outcompete CD4(+) T cells during disease development. Therefore, TCR affinities exceeding an upper affinity threshold may impede the development of autoimmunity through altered development and functional maturation of T cells, including diminished intrinsic CD4(+) T cell pathogenicity and the development of CD4(-)Foxp3(-) regulatory populations.  相似文献   

6.
T cells have evolved a unique system of ligand recognition involving an antigen T cell receptor (TCR) and a coreceptor that integrate stimuli provided by the engagement of peptide-major histocompatibility complex (pMHC) antigens. Here, we use altered pMHC class I (pMHCI) molecules with impaired CD8 binding (CD8-null) to quantify the contribution of coreceptor extracellular binding to (i) the engagement of soluble tetrameric pMHCI molecules, (ii) the kinetics of TCR/pMHCI interactions on live cytotoxic T lymphocytes (CTLs), and (iii) the activation of CTLs by cell-surface antigenic determinants. Our data indicate that the CD8 coreceptor substantially enhances binding efficiency at suboptimal TCR/pMHCI affinities through effects on both association and dissociation rates. Interestingly, coreceptor requirements for efficient tetramer labeling of CTLs or for CTL activation by determinants displayed on the cell surface operated in different TCR/pMHCI affinity ranges. Wild-type and CD8-null pMHCI tetramers required monomeric affinities for cognate TCRs of KD < approximately 80 microM and approximately 35 microM, respectively, to label human CTLs at 37 degrees C. In contrast, activation by cellular pMHCI molecules was strictly dependent on CD8 binding only for TCR/pMHCI interactions with KD values >200 microM. Altogether, our data provide information on the binding interplay between CD8 and the TCR and support a model of CTL activation in which the extent of coreceptor dependence is inversely correlated to TCR/pMHCI affinity. In addition, the results reported here define the range of TCR/pMHCI affinities required for the detection of antigen-specific CTLs by flow cytometry.  相似文献   

7.
αβ T cell receptor (TCR) recognition of foreign peptides bound to major histocompatibility complex (pMHC) molecules on the surface of antigen presenting cells is a key event in the initiation of adaptive cellular immunity. In vitro, high-affinity binding and/or long-lived interactions between TCRs and pMHC correlate with high-potency T cell activation. However, less is known about the influence of TCR/pMHC interaction parameters on T cell responses in vivo. We studied the influence of TCR/pMHC binding characteristics on in vivo T cell immunity by tracking CD4+ T cell activation, effector, and memory responses to immunization with peptides exhibiting a range of TCR/pMHC half-lives and in vitro T cell activation potencies. Contrary to predictions from in vitro studies, we found that optimal in vivo T cell responses occur to ligands with intermediate TCR/pMHC half-lives. The diminished in vivo responses we observed to the ligand exhibiting the longest TCR/pMHC half-life were associated with attenuation of intracellular signaling, expansion, and function over a broad range of time points. Our results reveal a level of control over T cell activation in vivo not recapitulated in in vitro assays and highlight the importance of considering in vivo efficacy of TCR ligands as part of vaccine design.  相似文献   

8.
Rapid production of TNF-alpha following TCR engagement of naive CD8 T cells   总被引:2,自引:0,他引:2  
The acquisition of effector functions by naive CD8 T cells following TCR engagement is thought to occur sequentially with full functionality being gained only after the initiation of division. We show that naive CD8 T cells are capable of immediate effector function following TCR engagement, which stimulates the rapid production of TNF-alpha. Stimulation of splenocytes from naive mice of differing genetic backgrounds with anti-CD3epsilon mAb resulted in significant production of TNF-alpha by naive CD8 T cells within 5 h. Moreover, naive lymphocytic choriomeningitis virus-specific TCR-transgenic CD8 T cells stimulated with either their cognate peptide ligand or virus-infected cells produced TNF-alpha as early as 2 h poststimulation, with production peaking by 4 h. Naive CD8 T cells produced both membrane-bound and soluble TNF-alpha. Interfering with TNF-alpha activity during the initial encounter between naive CD8 T cells and Ag loaded dendritic cells altered the maturation profile of the APC and diminished the overall viability of the APC population. These findings suggest that production of TNF-alpha by naive CD8 T cells immediately after TCR engagement may have an unappreciated impact within the local environment where Ag presentation is occurring and potentially influence the development of immune responses.  相似文献   

9.
10.
T lymphocytes recognize peptides presented in the context of major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells. Recognition specificity is determined by the alphabeta T cell receptor (TCR). The T lymphocyte surface glycoproteins CD8 and CD4 enhance T cell antigen recognition by binding to MHC class I and class II molecules, respectively. Biophysical measurements have determined that equilibrium binding of the TCR with natural agonist peptide-MHC (pMHC) complexes occurs with KD values of 1-50 microm. The pMHCI/CD8 and pMHCII/CD4 interactions are significantly weaker than this (KD >100 microm), and the relative roles of TCR/pMHC and pMHC/coreceptor affinity in T cell activation remain controversial. Here, we engineer mutations in the MHCI heavy chain and beta2-microglobulin that further reduce or abolish the pMHCI/CD8 interaction to probe the significance of pMHC/coreceptor affinity in T cell activation. We demonstrate that the pMHCI/CD8 coreceptor interaction retains the vast majority of its biological activity at affinities that are reduced by over 15-fold (KD > 2 mm). In contrast to previous reports, we observe that the weak interaction between HLA A68 and CD8, which falls within this spectrum of reduced affinities, retains substantial functional activity. These findings are discussed in the context of current concepts of coreceptor dependence and the mechanism by which TCR coreceptors facilitate T cell activation.  相似文献   

11.
Ab stimulation of the TCR rapidly enhances the functional activity of the LFA-1 integrin. Although TCR-mediated changes in LFA-1 activity are thought to promote T cell-APC interactions, the Ag specificity and sensitivity of TCR-mediated triggering of LFA-1 is not clear. We demonstrate that peptide/MHC (pMHC) tetramers rapidly enhance LFA-1-dependent adhesion of OT-I TCR transgenic CD8(+) T cells to purified ICAM-1. Inhibition of src family tyrosine kinase or PI3K activity blocked pMHC tetramer- and anti-CD3-stimulated adhesion. These effects are highly specific because partial agonist and antagonist pMHC tetramers are unable to stimulate OT-I T cell adhesion to ICAM-1. The Ag thresholds required for T cell adhesion to ICAM-1 resemble those of early T cell activation events, because optimal LFA-1 activation occurs at tetramer concentrations that fail to induce maximal T cell proliferation. Thus, TCR signaling to LFA-1 is highly Ag specific and sensitive to low concentrations of Ag.  相似文献   

12.
The influence of costimulation on the activation of naive CD8+ T cells and thymocytes was studied in vitro using H-Y-specific TCR-transgenic mice and H-Y antigenic peptide. Using a variety of physiological APC types, the activation of naive CD8+ T cells depended strictly on costimulation, which could not be substituted by high epitope density. T cell activation is known to be regulated by the interactions between CD86/CD80 and CD28/CD152, although it remains unclear whether the B7 isoforms have distinct roles. Addition of soluble anti-CD86 Ab led to profound inhibition of T cell reactivity, further confirming the importance of costimulation in naive CD8+ T cell activation. Finally, TCR engagement in the absence of costimulation had no effect on the subsequent reactivity of peripheral naive transgenic CD8+ T cells, but induced nonresponsiveness in mature CD8+ transgenic thymocytes. Collectively, these results demonstrate the importance of costimulation for naive CD8+ T cell activation, suggest that CD80 and CD86 can mediate opposing effects, possibly due to differential interaction with CD152 and CD28, and indicate differences in the sensitivity of immature vs mature CD8+ T cells to the induction of nonresponsiveness following costimulation-deficient Ag presentation.  相似文献   

13.
In CD45-deficient animals, there is a severe defect in thymocyte-positive selection, resulting in an absence of mature T cells and the accumulation of thymocytes at the DP stage of development. However, the signaling defect(s) responsible for the block in development of mature single-positive T cells is not well characterized. Previous studies have found that early signal transduction events in CD45-deficient cell lines and thymocytes are markedly diminished following stimulation with anti-CD3. Nevertheless, there are also situations in which T cell activation and TCR signaling events can be induced in the absence of CD45. For example, CD45-independent TCR signaling can be recovered upon simultaneous Ab cross-linking of CD3 and CD4 compared with cross-linking of CD3 alone. These data suggest that CD45 may differentially regulate TCR signaling events depending on the nature of the signal and/or on the differentiation state of the cell. In the current study, we have assessed the role of CD45 in regulating primary thymocyte activation following physiologic stimulation with peptide. Unlike CD3-mediated stimulation, peptide stimulation of CD45-deficient thymocytes induces diminished, but readily detectable TCR-mediated signaling events, such as phosphorylation of TCR-associated zeta, ZAP70, linker for activation of T cells, and Akt, and increased intracellular calcium concentration. In contrast, phosphorylation of ERK, which is essential for positive selection, is more severely affected in the absence of CD45. These data suggest that CD45 has a selective role in regulating different aspects of T cell activation.  相似文献   

14.
A role for TCR affinity in regulating naive T cell homeostasis   总被引:11,自引:0,他引:11  
Homeostatic signals that control the overall size and composition of the naive T cell pool have recently been identified to arise from contact with self-MHC/peptide ligands and a cytokine, IL-7. IL-7 presumably serves as a survival factor to keep a finite number of naive cells alive by preventing the onset of apoptosis, but how TCR signaling from contact with self-MHC/peptide ligands regulates homeostasis is unknown. To address this issue, murine polyclonal and TCR-transgenic CD8+ cells expressing TCR with different affinities for self-MHC/peptide ligands, as depicted by the CD5 expression level, were analyzed for their ability to respond to and compete for homeostatic factors under normal and lymphopenic conditions. The results suggest that the strength of the TCR affinity determines the relative "fitness" of naive T cells to compete for factors that support cell survival and homeostatic proliferation.  相似文献   

15.
The E3 ubiquitin ligase Cbl-b is a negative regulator of TCR signaling that: 1) sets the activation threshold for T cells; 2) is induced in anergic T cells; and 3) protects against autoimmunity. However, the role of Cbl-b in regulating CD8 T cell activation and functions during physiological T cell responses has not been systematically examined. Using the lymphocytic choriomeningitis virus infection model, we show that Cbl-b deficiency did not significantly affect the clonal expansion of virus-specific CD8 T cells. However, Cbl-b deficiency not only increased the steady-state cell surface expression levels of TCR and CD8 but also reduced Ag-induced down-modulation of cell surface TCR expression by effector CD8 T cells. Diminished Ag-stimulated TCR down-modulation and sustained Ag receptor signaling induced by Cbl-b deficiency markedly augmented IFN-gamma production, which is known to require substantial TCR occupancy. By contrast, Cbl-b deficiency minimally affected cell-mediated cytotoxicity, which requires limited engagement of TCRs. Surprisingly, despite elevated expression of CD8 and reduced Ag-induced TCR down-modulation, the functional avidity of Cbl-b-deficient effector CD8 T cells was comparable to that of wild-type effectors. Collectively, these data not only show that Cbl-b-imposed constraint on TCR signaling has differential effects on various facets of CD8 T cell response but also suggest that Cbl-b might mitigate tissue injury induced by the overproduction of IFN-gamma by CD8 T cells. These findings have implications in the development of therapies to bolster CD8 T cell function during viral infections or suppress T cell-mediated immunopathology.  相似文献   

16.
17.
TCR engagement by peptide-MHC class I (pMHC) ligands induces a conformational change (Deltac) in CD3 (CD3Deltac) that contributes to T cell signaling. We found that when this interaction took place between primary T lineage cells and APCs, the CD8 coreceptor was required to generate CD3Deltac. Interestingly, neither enhancement of Ag binding strength nor Src kinase signaling explained this coreceptor activity. Furthermore, Ag-induced CD3Deltac was developmentally attenuated by the increase in sialylation that accompanies T cell maturation and limits CD8 activity. Thus, both weak and strong ligands induced CD3Deltac in preselection thymocytes, but only strong ligands were effective in mature T cells. We propose that CD8 participation in the TCR/pMHC interaction can physically regulate CD3Deltac induction by "translating" productive Ag encounter from the TCR to the CD3 complex. This suggests one mechanism by which the developmentally regulated variation in CD8 sialylation may contribute to the developmental tuning of T cell sensitivity.  相似文献   

18.
A regulatory role for CD37 in T cell proliferation   总被引:4,自引:0,他引:4  
CD37 is a leukocyte-specific protein belonging to the tetraspanin superfamily. Previously thought to be predominantly a B cell molecule, CD37 is shown in this study to regulate T cell proliferation. CD37-deficient (CD37(-/-)) T cells were notably hyperproliferative in MLR, in response to Con A, or CD3-TCR engagement particularly in the absence of CD28 costimulation. Hyperproliferation was not due to differences in memory to naive T cell ratios in CD37(-/-) mice, apoptosis, or TCR down-modulation. Division cycle analyses revealed CD37(-/-) T cells to enter first division earlier than wild-type T cells. Importantly, proliferation of CD37(-/-) T cells was preceded by enhanced early IL-2 production. We hypothesized CD37 to be involved in TCR signaling and this was supported by the observation that CD4/CD8-associated p56(Lck) kinase activity was increased in CD37(-/-) T cells. Remarkably, CD37 cross-linking on human T cells transduced signals that led to complete inhibition of CD3-induced proliferation. In the presence of CD28 costimulation, CD37 engagement still significantly reduced proliferation. Taken together, these results demonstrate a regulatory role for CD37 in T cell proliferation by influencing early events of TCR signaling.  相似文献   

19.
Human microvascular endothelial cells (ECs) constitutively express MHC class II in peripheral tissues, the function of which remains unknown. In vitro assays have established that the recognition of EC MHC class II can affect cytokine expression, proliferation, and delayed transendothelial migration of allogeneic memory, but not naive, CD4+ T cells. Previously, we have shown that effector memory CD4+ T cells will rapidly transmigrate in response to the inflammatory chemokine IFN-gamma-inducible protein-10 (IP-10) in a process contingent upon the application of venular levels of shear stress. Using two models that provide polyclonal TCR signaling by ECs in this flow system, we show that TCR engagement antagonizes the rapid chemokine-dependent transmigration of memory CD4+ T cells. Inhibitor studies suggest that TCR signaling downstream of Src family tyrosine kinase(s) but upstream of calcineurin activation causes memory CD4+ T cell arrest on the EC surface, preventing the transendothelial migration response to IP-10.  相似文献   

20.
Most current models of T cell activation postulate a requirement for two distinct signals. One signal is delivered through the TCR by engagement with peptide/MHC complexes, and the second is delivered by interaction between costimulatory molecules such as CD28 and its ligands CD80 and CD86. Soluble peptide/MHC tetramers provide an opportunity to test whether naive CD8+ T cells can be activated via the signal generated through the TCR-alphabeta in the absence of any potential costimulatory molecules. Using T cells from two different TCR transgenic mice in vitro, we find that TCR engagement by peptide/MHC tetramers is sufficient for the activation of naive CD8+ T cells. Furthermore, these T cells proliferate, produce cytokines, and differentiate into cytolytic effectors. Under the conditions where anti-CD28 is able to enhance proliferation of normal B6 CD4+, CD8+, and TCR transgenic CD8+ T cells with anti-CD3, we see no effect of anti-CD28 on proliferation induced by tetramers. The results of this experiment argue that given a strong signal delivered through the TCR by an authentic ligand, no costimulation is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号