首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Zn finger provides a model for studies of protein structure and stability. Its core contains a conserved phenylalanine residue adjoining three architectural elements: a beta-hairpin, an alpha-helix and a tetrahedral Zn(2+)-binding site. Here, we demonstrate that the consensus Phe is not required for high-affinity Zn(2+) binding but contributes to the specification of a precise DNA-binding surface. Substitution of Phe by leucine in a ZFY peptide permits Zn(2+)-dependent folding. Although a native-like structure is retained, structural fluctuations lead to attenuation of selected nuclear Overhauser enhancements and accelerated amide proton exchange. Surprisingly, wild-type Zn affinity is maintained by entropy-enthalpy compensation (EEC): a hidden entropy penalty (TDeltaDeltaS 7kcal/mol) is balanced by enhanced enthalpy of association (DeltaDeltaH -7kcal/mol) at 25 degrees C. Because the variant is less well ordered than the Phe-anchored domain, the net change in entropy is opposite to the apparent change in configurational entropy. By analogy to the thermodynamics of organometallic complexation, we propose that EEC arises from differences in solvent reorganization. Exclusion of Leu among biological sequences suggests an evolutionary constraint on the dynamics of a Zn finger.  相似文献   

2.
To obtain a clearer understanding of the forces involved in transition state stabilization by Escherichia coli cytidine deaminase, we investigated the thermodynamic changes that accompany substrate binding in the ground state and transition state for substrate hydrolysis. Viscosity studies indicate that the action of cytidine deaminase is not diffusion-limited. Thus, K(m) appears to be a true dissociation constant, and k(cat) describes the chemical reaction of the ES complex, not product release. Enzyme-substrate association is accompanied by a loss of entropy and a somewhat greater release of enthalpy. As the ES complex proceeds to the transition state (ES), there is little further change in entropy, but heat is taken up that almost matches the heat that was released with ES formation. As a result, k(cat)/K(m) (describing the overall conversion of the free substrate to ES is almost invariant with changing temperature. The free energy barrier for the enzyme-catalyzed reaction (k(cat)/K(m)) is much lower than that for the spontaneous reaction (k(non)) (DeltaDeltaG = -21.8 kcal/mol at 25 degrees C). This difference, which also describes the virtual binding affinity of the enzyme for the activated substrate in the transition state (S), is almost entirely enthalpic in origin (DeltaDeltaH = -20.2 kcal/mol), compatible with the formation of hydrogen bonds that stabilize the ES complex. Thus, the transition state affinity of cytidine deaminase increases rapidly with decreasing temperature. When a hydrogen bond between Glu-91 and the 3'-hydroxyl moiety of cytidine is disrupted by truncation of either group, k(cat)/K(m) and transition state affinity are each reduced by a factor of 10(4). This effect of mutation is entirely enthalpic in origin (DeltaDeltaH approximately 7.9 kcal/mol), somewhat offset by a favorable change in the entropy of transition state binding. This increase in entropy is attributed to a loss of constraints on the relative motions of the activated substrate within the ES complex. In an Appendix, some objections to the conventional scheme for transition state binding are discussed.  相似文献   

3.
In neutral solution, 5,6-dihydrocytidine undergoes spontaneous deamination (k25 approximately 3.2 x 10(-5) s(-1)) much more rapidly than does cytidine (k25 approximately 3.0 x 10(-10) s(-1)), with a more favorable enthalpy of activation (DeltaDeltaH# = -8.7 kcal/mol) compensated by a less favorable entropy of activation (TDeltaDeltaS# = -1.8 kcal/mol at 25 degrees C). E. coli cytidine deaminase enhances the rate of deamination of 5,6-dihydrocytidine (kcat/k(non) = 4.4 x 10(5)) by enhancing the entropy of activation (DeltaDeltaH# = 0 kcal/mol; TDeltaDeltaS# = +7.6 kcal/mol, at 25 degrees C). Binding of the competitive inhibitor 3,4,5,6-tetrahydrouridine (THU), a stable analogue of 5,6-dihydrocytidine in the transition state for its deamination, is accompanied by a release of enthalpy (DeltaH = -7.1 kcal/mol, TDeltaDeltaS = +2.2 kcal/mol) that approaches the estimated enthalpy of binding of the actual substrate in the transition state for deamination of 5,6-dihydrocytidine (DeltaH = -8.1 kcal/mol, TDeltaDeltaS = +6.0 kcal/mol). Thus, the shortcomings of THU in capturing all of the binding affinity expected of an ideal transition-state analogue reflect a less favorable entropy of association. That difference may arise from the analogue's inability to displace a water molecule from the "leaving group site" at which ammonia is generated in the normal reaction. The effect on binding of removing the 4-OH group from the transition-state analogue THU, to form 3,4,5,6-tetrahydrozebularine (THZ) (DeltaDeltaH = -2.1 kcal/mol, TDeltaDeltaS = -4.4 kcal/mol), is mainly entropic, consistent with the inability of THZ to displace water from the "attacking group site". These results are consistent with earlier indications [Snider, M. J., and Wolfenden, R. (2001) Biochemistry 40, 11364] that site-bound water plays a prominent role in substrate activation and inhibitor binding by cytidine deaminase.  相似文献   

4.
The S protein-S peptide interaction is a model system to study binding thermodynamics in proteins. We substituted alanine at position 4 in S peptide by alpha-aminoisobutyric acid (Aib) to investigate the effect of this substitution on the conformation of free S peptide and on its binding to S protein. The thermodynamic consequences of this replacement were studied using isothermal titration calorimetry. The structures of the free and complexed peptides were studied using circular dichroic spectroscopy and X-ray crystallography, respectively. The alanine4Aib replacement stabilizes the free S peptide helix and does not perturb the tertiary structure of RNase S. Surprisingly, and in contrast to the wild-type S peptide, the DeltaG degrees of binding of peptide to S pro, over the temperature range 5-30 degrees C, is virtually independent of temperature. At 25 degrees C, the DeltaDeltaG degrees, DeltaDeltaH degrees, DeltaDeltaS and DeltaDeltaCp of binding are 0.7 kcal/mol, 2.8 kcal/mol, 6 kcal/mol x K and -60 kcal/mol x K, respectively. The positive value of DeltaDeltaS is probably due to a decrease in the entropy of uncomplexed alanine4Aib relative to the wild-type peptide. The positive value of DeltaDeltaH: degrees is unexpected and is probably due to favorable interactions formed in uncomplexed alanine4Aib. This study addresses the thermodynamic and structural consequences of a replacement of alanine by Aib both in the unfolded and complexed states in proteins.  相似文献   

5.
The mechanism of recognition of proteins and peptides by antibodies and the factors determining binding affinity and specificity are mediated by essentially the same features. However, additional effects of the usually unfolded and flexible solution structure of peptide ligands have to be considered. In an earlier study we designed and optimized six peptides (pepI to pepVI) mimicking the discontinuous binding site of interleukin-10 for the anti-interleukin-10 monoclonal antibody (mab) CB/RS/1. Three of them were selected for analysis of their solution conformation by circular dichroism measurements. The peptides differ in the content of alpha-helices and in the inducibility of helical secondary structures by trifluoroethanol. These properties, however, do not correlate with the binding affinity. PepVI, a 32-mer cyclic epitope mimic, has the highest affinity to mab CB/RS/1 identified to date. CD difference spectroscopy suggests an increase of the alpha-helix content of pepVI with complex formation. Binding of pepVI to mab CB/RS/1 is characterized by a large negative, favorable binding enthalpy and a smaller unfavorable loss of entropy (DeltaH degrees = -16.4 kcal x mol(-1), TDeltaS degrees = -6.9 kcal x mol(-1)) resulting in DeltaG degrees = -9.5 kcal x mol(-1) at 25 degrees C as determined by isothermal titration calorimetry. Binding of pepVI is enthalpically driven over the entire temperature range studied (10-35 degrees C). Complex formation is not accompanied by proton uptake or release. A negative heat capacity change DeltaC(p) of -0.354 kcal x mol(-1) x K(-1) was determined from the temperature dependence of DeltaH degrees. The selection of protein mimics with the observed thermodynamic properties is promoted by the applied identification and iterative optimization procedure.  相似文献   

6.
Blasie CA  Berg JM 《Biochemistry》2004,43(32):10600-10604
Zinc(II) and cobalt(II) binding to a series of zinc finger peptides with different charged residue pairs across from one another in a beta-sheet were examined. Previous studies revealed a narrow range of interaction free energies (<0.5 kcal/mol) between these residues. Here, isothermal titration calorimetry studies were performed, revealing a range of over 3 kcal/mol in relative binding enthalpies. Double mutant cycle analysis revealed a range of interaction enthalpies ranging from -3.1 to -3.4 kcal/mol for the Arg-Asp pair to -0.8 kcal/mol for the Lys-Glu pair. The large range of interaction enthalpies coupled with the small range of interaction free energies reveals substantial entropy-enthalpy compensation. The magnitudes of the effects are consistent with the formation of a structurally rigid Arg-Asp contact ion pair but less direct and more mobile interactions involving the other combinations.  相似文献   

7.
The voltage-gated sodium channel (VGSC) is the target site for insecticides such as DDT and synthetic pyrethroids. A single base (A-T) change in the knock-down resistance (kdr) allele leads to an amino acid substitution at position 267 that confers the target-mediated resistance to DDT and synthetic pyrethroids in Anopheles gambiae. A theoretical model of the VGSC domain II that contains the site of mutation was constructed using the K;+ channel protein of Aeropyrum pernix as a template. The validated model with 88.6% residues in the favored region was subjected to the CASTp program that predicted 30 pockets in the modeled domain II for ligand interaction. In the model, at position 267, leucine was manually replaced with phenylalanine. When this altered model was subjected to the CASTp program, the search results showed the same number of pockets. The docking results indicate that DDT interacts with the modeled VGSC domain II at position 275 in the presence of leucine or in the presence of phenylalanine (binding energy =-5.32 kcal/mol, -6.21 kcal/mol). It appears from the results that the mutation at position 267 has no direct influence on the interaction of DDT with the target protein. Therefore, to understand the interaction affinity of DDT with the target and influence of the mutation on the existence of active sites/pockets in relation to ligand binding, a whole VGSC model is necessary.  相似文献   

8.
9.
The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug-resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, 5-15 kcal/mol, while losing only 1-3 kcal/mol in total binding free energy for any of six FDA-approved inhibitors. Although entropy-enthalpy compensation has been previously observed for a variety of systems, never have changes of this magnitude been reported. The co-crystal structures of Flap+ protease with four of the inhibitors were determined and compared with complexes of both the wild-type protease and another drug-resistant variant that does not exhibit this energetic compensation. Structural changes conserved across the Flap+ complexes, which are more pronounced for the flaps covering the active site, likely contribute to the thermodynamic compensation. The finding that drug-resistant mutations can profoundly modulate the relative thermodynamic properties of a therapeutic target independent of the inhibitor presents a new challenge for rational drug design.  相似文献   

10.
This study presents the anti-inflammatory potential of Trachyspermum ammi essential oil (TAEO) against Escherichia coli lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. TAEO displayed the anti-inflammatory activity by reducing nitric oxide production and impact on the expression of nitric oxide synthases (iNOS), cyclooxygenase-2 (COX-2), and heme oxygenase-1 (HO-1). Besides, TAEO effectively inhibited the COX-2 enzyme activity with IC50 value at 4.49 μg/mL. Furthermore, the molecular docking and simulation studies suggest a strong interaction between COX-2 and the important TAEO components thymol, (-5.88 kcal/mol) and carvacrol (-6.30 kcal/mol). The thymol and carvacrol docked complexes are stabilized by hydrogen bonds (at alanine 188 and tyrosine 371) and several hydrophobic interactions at phenylalanine 196, tyrosine 371, tryptophan 373, and leucine 376 and alanine 185, alanine 188, phenylalanine 196, tryptophan 373, leucine 376, and leucine 377, respectively. These results collectively suggest the anti-inflammatory role of TAEO.  相似文献   

11.
Fenton AW  Reinhart GD 《Biochemistry》2002,41(45):13410-13416
Escherichia coli phosphofructokinase 1 (EcPFK) is a homotetramer with four active and four allosteric sites. Understanding of the structural basis of allosteric activation of EcPFK by MgADP is complicated by the multiplicity of binding sites. To isolate a single heterotropic allosteric interaction, hybrid tetramers were formed between wild-type and mutant EcPFK subunits in which the binding sites of the mutant subunits have decreased affinity for their respective ligands. The 1:3 (wild-type:mutant) hybrid that contained only one native active site and one native allosteric site was isolated. The affinity for the substrate fructose-6-phosphate (Fru-6-P) of a single wild-type active site is greatly decreased over that displayed by the wild-type tetramer due to the lack of homotropic activation. The free energy of activation by MgADP for this heterotropic interaction is -0.58 kcal/mol at 8.5 degrees C. This compares to -2.87 kcal/mol for a hybrid with no homotropic coupling but all four unique heterotropic interactions. Therefore, the isolated interaction contributes 20% of the total heterotropic coupling. By comparison, wild-type EcPFK exhibits a coupling free energy between Fru-6-P and MgADP of -1.56 kcal/mol under these conditions, indicating that the effects of MgADP are diminished by a homotropic activation equal to -1.3 kcal/mol. These data are not consistent with a concerted allosteric mechanism.  相似文献   

12.
N Noy  Z J Xu 《Biochemistry》1990,29(16):3888-3892
Retinol (vitamin A alcohol) is a hydrophobic compound and distributes in vivo mainly between binding proteins and cellular membranes. To better clarify the nature of the interactions of retinol with these phases which have a high affinity for it, the thermodynamic parameters of these interactions were studied. The temperature-dependence profiles of the binding of retinol to bovine retinol binding protein, bovine serum albumin, unilamellar vesicles of dioleoylphosphatidylcholine, and plasma membranes from rat liver were determined. It was found that binding of retinol to retinol binding protein is characterized by a large increase in entropy (T delta S degrees = +10.32 kcal/mol) and no change in enthalpy. Binding to albumin is driven by enthalpy (delta H degrees = -8.34 kcal/mol) and is accompanied by a decrease in entropy (T delta S degrees = -2.88 kcal/mol). Partitioning of retinal into unilamellar vesicles and into plasma membranes is stabilized both by enthalpic (delta H degrees was -3.3 and -5.5 kcal/mol, respectively) and by entropic (T delta S degrees was +4.44 and +2.91 kcal/mol, respectively) components. The implications of these finding are discussed.  相似文献   

13.
Inhibition of family 18 chitinases is emerging as a target for pest and fungal control as well as asthma and inflammatory therapy. One of the best known inhibitors for these enzymes is allosamidin, a natural product. While interactions of this compound with family 18 chitinases have been studied in much detail by X-ray crystallography and standard enzymology, details of the driving forces behind its tight binding remain unknown. We have studied the thermodynamics of allosamidin binding to chitinase B (ChiB), a family 18 chitinase from Serratia marcescens, using isothermal titration calorimetry. At pH 6.0, Kd is 0.16 +/- 0.04 microM, and the binding reaction is entropically driven (DeltaSr = 44 cal/K mol) with an enthalpic penalty (DeltaHr = 3.8 +/- 0.2 kcal/mol). Dissection of the entropic term shows that a favorable conformational change in the allosamidin-ChiB complex (DeltaSconf = 37 cal/K mol) is the main contributor to the reaction. At pH 8.5, Kd decreases to 0.03 muM and the binding reaction is less entropically favorable (DeltaSr = 30 cal/K mol). While the solvation entropy change (DeltaSsolv) increases from 15 cal/K mol at pH 6.0 to 46 cal/K mol at pH 8.5, DeltaSconf becomes small and negative (-8 cal/K mol) because of an enthalpy-entropy compensation. Analyses of proton transfer showed that at pH 6.0 binding of allosamidin requires deprotonation of the Asp142-Glu144 catalytic diad. At pH 8.5, the 142-144 diad is ionized in the native enzyme, relieving the deprotonation penalty of binding and explaining why binding becomes enthalpically favorable (DeltaHr = -1.2 +/- 0.2 kcal/mol).  相似文献   

14.
This contribution describes experimental measurements of submolecular-level interaction energies involved in the process of peptide adsorption on polymer films. The objective of this study was to use surface plasmon resonance (SPR) spectroscopy to measure the Gibbs energy change on adsorption (DeltaG(ad)) for pairs of various homopeptides on highly uniform, nanothin polymer films and to use these data, along with the principle of additivity, to predict DeltaG(ad) for homologous homopeptides, as well as for a mixed-residue peptide. By using a graft polymerization methodology, a nanothin poly(2-vinylpyridine) film was prepared and adsorption energies were measured first for a homologous series of tyrosine (Y) homopeptides on this film to determine submolecular-level interaction energies. By using SPR, adsorption isotherms were measured for YY and YYY peptides; analysis of these isotherms provided DeltaG(ad) data for a midchain tyrosine unit and a set of chain-end tyrosine units; values were -0.75 +/- 0.07 kcal/mol and -2.12 +/- 0.04 kcal/mol, respectively. Combining the thermodynamic contributions for adsorption of individual tyrosine units allowed a predictive estimate of -5.12 +/- 0.32 kcal/mol for the adsorption energy for YYYYYY; this estimate deviated by only 2.3% from its measured value of -5.24 +/- 0.06 kcal/mol. Similarly, adsorption energies were found for phenylalanine, glycine, and tyrosine-leucine peptides. Combining the thermodynamic contributions for adsorption of individual residue units allowed a predictive estimate of -3.24 +/- 0.38 kcal/mol for a pentapeptide, leucine enkephalin; this estimate deviated by only 3.0% from its measured value of -3.34 +/-0.11 kcal/mol.  相似文献   

15.
Chopra S  Lynch R  Kim SH  Jackson M  Howell EE 《Biochemistry》2006,45(21):6596-6605
R67 dihydrofolate reductase (DHFR) is a novel homotetrameric protein that possesses 222 symmetry and a single, voluminous active site pore. This symmetry poses numerous limitations on catalysis; for example, two dihydrofolate (DHF) molecules or two NADPH molecules, or one substrate plus one cofactor can bind. Only the latter combination leads to catalysis. To garner additional information on how this enzyme facilitates transition-state formation, the temperature dependence of binding and catalysis was monitored. The binding of NADPH and DHF is enthalpy-driven. Previous primary isotope effect studies indicate hydride transfer is at least partially rate-determining. Accordingly, the activation energy associated with transition-state formation was measured and is found to be 6.9 kcal/mol (DeltaH(++)(25) = 6.3 kcal/mol). A large entropic component is also found associated with catalysis, TDeltaS(++)(25) = -11.3 kcal/mol. The poor substrate, dihydropteroate, binds more weakly than dihydrofolate (DeltaDeltaG = 1.4 kcal/mol) and displays a large loss in the binding enthalpy value (DeltaDeltaH = 3.8 kcal/mol). The k(cat) value for dihydropteroate reduction is decreased 1600-fold compared to DHF usage. This effect appears to derive mostly from the DeltaDeltaH difference in binding, demonstrating that the glutamate tail is important for catalysis. This result is surprising, as the para-aminobenzoyl-glutamate tail of DHF has been previously shown to be disordered by both NMR and crystallography studies. Viscosity studies were also performed and confirmed that the hydride transfer rate is not sensitive to sucrose addition. Surprisingly, binding of DHF, by both K(m) and K(d) determination, was found to be sensitive to added viscogens, suggesting a role for water in DHF binding.  相似文献   

16.
Reddi AR  Gibney BR 《Biochemistry》2007,46(12):3745-3758
The current limited understanding of the free energy contributions of metal-protein interactions toward metalloprotein stability is largely due to an inability to separate the energetics of the metal-ligand and protein-protein interactions. In order to elucidate the thermodynamic contribution of a Zn(II)-(S.Cys)4 site toward metalloprotein stability relevant to classic structural Zn(II) sites, the reaction of {Zn(II)(H2O)6}2+ with a minimal, unstructured, tetracysteine 16-mer peptide, GGG, is described. Isothermal titration fluorimetry over the pH range of 4.5 to 9.0 is used to measure the free energy of Zn(II) binding to the model peptide GGG. The data show that, in the absence of proton competition, Zn(II) binds to the Cys4 coordination sphere with a Kd of 60 aM, indicating that the Zn(II)-(S.Cys)4 interaction can provide up to 22.1 kcal mol-1 in driving force for protein stabilization, folding, and/or assembly. Isothermal titration calorimetry shows that Zn(II)-GGG formation is entropy driven because of water release from both the metal and the peptide scaffold. At pH 7.0, where the Zn(II)-GGG Kd value is 8.0 pM, the reaction releases 3.8 protons, is endothermic with DeltaHrxn of +6.4 kcal mol-1, and entropy driven with DeltaSrxn of +72 cal K-1 mol-1. At pH 8.0, where the peptide is partially deprotonated prior to Zn(II) binding, the 1.0 fM Zn(II)-GGG Kd value reflects a Zn(II) complexation reaction involving the release of 2.5 protons, which is slightly exothermic, with DeltaHrxn of -2.0 kcal mol-1, and largely entropy driven, with DeltaSrxn of +61 cal K-1 mol-1. At pH 5.5, where proton competition weakens the Kd to 4.0 microM, only 3.2 protons are released upon Zn(II) binding, the reaction is endothermic, with DeltaHrxn of +7.7 kcal mol-1, and entropy driven, with DeltaSrxn of +51 cal K-1 mol-1. Likely an intrinsic property of Zn(II)-(S.Cys)4 sites, the entropy driven binding of Zn(II) reflects the proton dependent chemical speciation of the Zn(II)-(S.Cys)4 peptide complex and its effects on modulating the dehydration of both the peptide and metal. Furthermore, the Zn(II) binding thermodynamics of a variety of Zn(II) proteins at pH 7.0 reveals the presence of enthalpy-entropy compensation (EEC) phenomena in nature.  相似文献   

17.
Mutagenized dockerin domains of endoglucanase CelD (type I) and of the cellulosome-integrating protein CipA (type II) were constructed by swapping residues 10 and 11 of the first or the second duplicated segment between the two polypeptides. These residues have been proposed to determine the specificity of cohesin-dockerin interactions. The dockerin domain of CelD still bound to the seventh cohesin domain of CipA (CohCip7), provided that mutagenesis occurred in one segment only. Binding was no longer detected by nondenaturing gel electrophoresis when both segments were mutagenized. The dockerin domain of CipA bound to the cohesin domain of SdbA as long as the second segment was intact. None of the mutated dockerins displayed detectable binding to the noncognate cohesin domain. Isothermal titration calorimetry showed that binding of the CelD dockerin to CohCip7 occurred with a high affinity [K(a) = (2.6 +/- 0.5) x 10(9) M(-1)] and a 1:1 stoichiometry. The reaction was weakly exothermic (DeltaHdegrees = -2.22 +/- 0.2 kcal x mol(-1)) and largely entropy driven (TDeltaSdegrees = 10.70 +/- 0.5 kcal x mol(-1)). The heat capacity change on complexation was negative (DeltaC(p) = -305 +/- 15 cal x mol(-1) x K(-1)). These values show that cohesin-dockerin binding is mainly hydrophobic. Mutations in the first or the second dockerin segment reduced or enhanced, respectively, the hydrophobic character of the interaction. Due to partial enthalpy-entropy compensation, these mutations induced only small changes in binding affinity. However, the binding affinity was strongly decreased when both segments were mutated, indicating strong negative cooperativity between the two mutated sites.  相似文献   

18.
Abraham T  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2005,44(33):11279-11285
The binding of the amphiphilic, positively charged, cyclic beta-sheet antimicrobial decapeptide gramicidin S (GS) to various lipid bilayer model membrane systems was studied by isothermal titration calorimetry. Large unilamellar vesicles composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoylphosphatidylcholine or the anionic phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, or a binary mixture of the two, with or without cholesterol, were used to mimic the lipid compositions of the outer monolayers of the lipid bilayers of mammalian and bacterial membranes, respectively. Dynamic light scattering results suggest the absence of major alterations in vesicle size or appreciable vesicle fusion upon the binding of GS to the lipid vesicles under our experimental conditions. The binding isotherms can be reasonably well described by a one-site binding model. GS is found to bind with higher affinity to anionic phosphatidylglycerol than to zwitterionic phosphatidylcholine vesicles, indicating that electrostatic interactions in the former system facilitate peptide binding. However, the presence of cholesterol reduced binding only slightly, indicating that the binding of GS is not highly sensitive to the order of the phospholipid bilayer system. Similarly, the measured positive endothermic binding enthalpy (DeltaH) varies only modestly (2.6 to 4.4 kcal/mol), and the negative free energy of binding (DeltaG) also remains relatively constant (-10.9 to -12.1 kcal/mol). The relatively large but invariant positive binding entropy, reflected in relatively large TDeltaS values (13.4 to 16.4 kcal/mol), indicates that GS binding to phospholipid bilayers is primarily entropy driven. Finally, the relative binding affinities of GS for various phospholipid vesicles correlate relatively well with the relative lipid specificity for GS interactions with bacterial and erythrocyte membranes observed in vivo.  相似文献   

19.
Blasie CA  Berg JM 《Biochemistry》2002,41(50):15068-15073
The thermodynamics of metal binding by the prototypical Cys(2)His(2) zinc finger peptide CP-1 has been examined through the use of isothermal titration calorimetry. In cholamine buffer at pH 7.0, the binding of zinc(II) to CP-1 shows an enthalpy change of DeltaH degrees (obs) = -33.7 +/- 0.8 kcal/mol. Between one and two protons appear to be released accompanying the metal binding process. The heat of protonation of the cholamine buffer used is quite large (-11.5 kcal/mol), indicating that a portion of the observed metal binding enthalpy is due to buffer protonation. Structure-based thermodynamic analysis including the effect of water release from zinc(II) appears to account for the entropy associated with the coupled metal binding-protein folding process semiquantitatively. The strongest driving force for the reaction is the enthalpy associated with the four bonds from zinc(II) to cysteinate and histidine residues, compared with the bonds from zinc(II) to water. The binding of cobalt(II) to CP-1 is less enthalpically driven than the binding of zinc(II) by -7.6 kcal/mol. This value is approximately equal to, but slightly larger than, the expectation based on considerations of ligand field stabilization energy.  相似文献   

20.
Abstract

Recent site-directed mutagenesis and thermodynamic studies have shown that the V74I mutant of Escherichia coli ribonuclease HI (RNase HI) is more stable than the wild type protein [Ishikawa et al., Biochemistry 32, 6171 (1993)]. In order to clarify the stabilization mechanism of this mutant, we calculated the free energy change due to the mutation Val 74→Ile in both the native and denatured states by free energy perturbations based on molecular dynamics (MD) simulations. We carried out inclusive MD simulations for the protein in water; i.e., fully solvated, no artificial constraints applied, and all long-range Coulomb interactions included. We found that the free energy of the mutant increased slightly relative to the wild type, in the native state by 1.60 kcal/mol, and in the denatured state by 2.25 kcal/mol. The unfolding free energy increment of the mutant (0.66 ± 0.19 kcal/mol) was in good agreement with the experimental value (0.6 kcal/mol). The hysteresis error in the free energy calculations, i.e., forward and reverse perturbations, was only ±0.19 kcal/mol. These results show that the V74I mutant is stabilized relative to the wild type by the increased free energy of the denatured state and not by a decrease in the free energy of the native state as had been proposed earlier based on the mutant X-ray structure. It was found that the stabilization was caused by a loss of solvation energy in the mutant denatured state and not by improved packing interactions inside the native protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号