首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical analysis of the H-2K-gene product from the MHC mutant strainbml and from the C57BL/6 parent strain has been carried out in order to characterize the structural differences between parent and mutant K-gene products. Based on comparative tryptic peptide mapping of the cyanogen bromide fragments from these glycoproteins, two peptide differences were localized to the CN-Ia fragment. Partial amino-acid sequence analysis revealed two alterations in the primary structure of Kbml involving substitutions of tyrosine for arginine at position 155, and tyrosine for leucine at position 156. Both of these amino-acid replacements require a minimum of two nucleotide base changes at the nucleic acid level. These changes were the only alterations noted differentiating the Kbml and Kb glycoproteins. However, because our techniques allow us to analyze only 75 to 80 percent of the extra cellular portion of H-2Kb, it is possible there are other undetected changes. Nonetheless, the biochemical data are consistent with the hypothesis that the structural alterations noted in the Kbml mutant glycoprotein are directly related to the observed immunological specificity relative to the parent Kb molecule. Peptide comparisons of the Kb molecules of two C57BL/6 sublines and of the H-2b lymphoblastoid cell line, EL-4, disclosed no difference.  相似文献   

2.
Biochemical analyses of the H-2K-gene products of the C57BL/6 mutant strains, bm3 and bm11, have been carried out in order to characterize the structural relationships among these antigens. From comparative tryptic peptide mapping of cyanogen bromide fragments from the mutant and parent Kb glycoproteins and from preliminary amino-acid sequence analyses, a number of discrete differences have been discerned. Two sites of difference at amino residues 77 and 89 in the Kbm3 glycoprotein are noted relative to Kb. An alteration at residue 77 similar or identical to that seen in Kbm3 is present in the K antigen of thebm11 mutant. Because our techniques sample only 75 to 80 percent of the extracellular portion of H-2Kb, other undetected changes are possible. However, our present findings are most consistent with the conclusion that only very limited differences exist between mutant and parent molecules. Further, taken together with CML (cell-mediated-lymphocytotoxicity) reaction patterns (Melief et al. 1980), the biochemical data support the hypothesis that the proposed structural alterations in theK b mutant glycoproteins are directly related to their observed immunological specificity.  相似文献   

3.
M W Moore  F R Carbone  M J Bevan 《Cell》1988,54(6):777-785
In order to investigate how peptides associate with class I major histocompatibility complex (MHC) glycoproteins intracellularly, we generated cytotoxic T lymphocytes (CTL) specific for a readily available soluble protein in association with class I. C57BL/6 (H-2b) mice immunized against a syngeneic tumor cell transfected with chicken ovalbumin (OVA) cDNA gave rise to H-2Kb-restricted CTL specific for the OVA258-276 peptide. This synthetic peptide and CNBr fragments of OVA (242-285 and 242-273) were able to target H-2b cells for lysis by the CTL in a 3 hr assay. Cells incubated with native OVA for up to 24 hr did not become sensitized for recognition and lysis. However, when OVA was introduced directly into the cytoplasm of cells by the osmotic lysis of pinosomes, the Kb restricted determinant formed readily.  相似文献   

4.
Previous study demonstrated that anti-H-43a cytotoxic T lymphocyte (CTL) response of H-43b CWB (H-2b) stain carrying non-major histocompatability complex (MHC) genes of C3H and F1 strains raised by crossing CWB with various H-43b strains was restricted exclusively by self H-2Kb (Kb). In the present study, newly produced C3W strain (H-2k, H-43b), which is H-43-congenic to C3H/HeN (H-2k, H-43a), was used as H-43b mice, and possibility of immunodominance of Kb was examined. No anti-H-43a CTL response could be induced in C3W strain and F1 strains raised by crossing C3W with other H-43b strains not carrying Kb. Thus, the possibility of immunodominance of Kb over the other MHC class I alleles could not be supported. We also examined possibility of epistatic effect of I region genes and non-MHC genes on the Kb restriction. (C3W x C57BL/6)F1(I-Ak/b) and (C3W x B6.CH-2bm12)F1(I-Ak/bm12)mice showed equally anti-H-43a CTL response restricted exclusively by self Kb, and (C3W x B10.MBR)F1(Ik/k) mice also showed anti-H-43a CTL response restricted solely by self Kb. Cold target competition experiments demonstrated that H-43b C57BL/10 or A.BY mice, which do not have non-MHC genes of C3H mounted anti-H-43a CTL response restricted solely by self Kb. Thus, no relation of I region genes or non-MHC genes to the Kb restriction was shown. All the results indicate that H-43b mouse strains, including F1, can not achieve anti-H-43a CTL response unless they carry Kb allele. Notably, (C3W x C57BL/6)F1 mice mounted self Kb-restricted anti-H-43a CTL response, whereas (C3W x B6.CH-2bm1)F1 mice carrying mutated Kb could not mount anti-H-43a CTL response at all. These findings indicate strongly that Kb itself is classical Ir gene of anti-H-43a CTL response and directs self Kb restriction of the response.  相似文献   

5.
Lymphocyte populations from B6, C-H-2bml (KbmlDb) mutant mice cannot, after both in vivo and in vitro negative selection for alloreactivity, be induced to recognize vaccinia virus presented in the context of H-2Kb. This finding may mean that the T cell receptor(s) expresses a component that is very specific for a particular "active site" on the self-H-2 molecule. Alternatively, (if recognition is directed at a virus-H-2 complex) the more similar 2 H-2 molecules are, the more likely it may be that precursor thymocytes in the mutant with the capacity to bind H-2Kb + vaccinia virus may be deleted during ontogeny as a result of cross-reaction with H-2Kbml + endogenous antigen.  相似文献   

6.
Oligonucleotide-directed, site-specific mutagenesis has been employed to elucidate the role of individual amino acids on the expression and function of a MHC class I antigen. Two oligonucleotides were synthesized to introduce single amino acid substitutions in the murine H-2Ld gene. The highly conserved glycosylation site at amino acid position 86 was changed from asparagine to lysine to remove the carbohydrate moiety from the first external domain of the H-2 molecule, and the phenylalanine at position 116 was changed to tyrosine, replacing the Ld residue with the Kb type amino acid analogous to Kb mutants: bm5 and bm16 mutants derived from the Kb antigen have the Ld-type residue at this position. The mutant genes were constructed by annealing the mutagenic oligomers to the single stranded H-2Ld gene, followed by chain elongation reaction. The expected mutations were confirmed by DNA sequence determination. The mutant genes were introduced into mouse L cells by DNA-mediated gene transfer. Both mutant genes expressed the antigens on the cell surface, as detected by antibody binding; these antigens were reactive with the cytotoxic T cells specific for the H-2Ld antigen. Detailed examination with 16 monoclonal anti-H-2Ld antibodies revealed that the binding of some antibodies was significantly reduced in the glycosylation mutant, implying a certain contribution of the carbohydrates to the antigenic activity of some determinants. No detectable changes have been observed in the mutant of the substitution at position 116 by the parameters we tested.  相似文献   

7.
We have analyzed the functional significance of the four amino acid differences between the parental H-2Kb and mutant H-2Kbm8 glycoproteins. Six bm8 variants including single substitutions at residues 22, 23, 24, and 30 as well as paired substitutions at residues 23, 30 and 22, 24 were generated and transfected into L cells. Surface expression of these H-2Kb variants was analyzed using monoclonal antibodies which bind to well-defined H-2Kb epitopes. No alterations introduced into the conformational structure of H-2Kb by the amino acid substitutions were detected. The effect of these substitutions on CTL recognition was initially analyzed using the following bulk CTL: either H-2Kb anti-H-2Kbm8, H-2Kbm8 anti-H-2Kb, or third party anti-H-2Kb. The alloreactivity between H-2Kb and H-2Kbm8 is dominated by the amino acid substitution at residue 24 (Glu----Ser). The complete bm8 phenotype, however, also requires the additional substitution at residue 22 (Tyr----Phe). The H-2Kbm8 anti-Kb bulk CTL reacted with both variant H-2Kbm8 molecules containing single substitutions at amino acid positions 22 or 24 but not the variant molecule containing both substitutions. Further analysis using three individual H-2Kbm8 anti-Kb CTL clones indicated the complexity of the self Kbm8 phenotype. Clone 8B1.20 did not react to changes in residues 22 or 24. The 8B1.32 clone reacted with the change at residue 22 but not with the change at residue 24, although the 8B1.54 clone reacted with the change at residue 24 but not with the change at residue 22. The changes in residues 23 (Met----Ile) and/or 30 (Asp----Asn) did not impact significantly on the alloantigenic properties of Kbm8 as determined by both the bulk and cloned CTL populations. According to the three-dimensional class I structure the substitution at amino acid 24 is inaccessible to the TCR. The location of this substitution within the Ag recognition site implies that altered peptide binding, and not a disruption of MHC residues that interact with the TCR, is responsible for the alloreactivity between H-2Kb and H-2Kbm8.  相似文献   

8.
We have taken the approach of producing somatic cell variants with altered H-2 products to study the structural requirements for cell surface expression of class I histocompatibility molecules. H-2 antigen variants generated by chemical mutagenesis of a cell line expressing the H-2b haplotype were first selected with alloantisera for their loss of H-2Kb expression, and then were analyzed by radioimmunoassay for the appearance of intracellular Kb antigen. For one such variant (69.9.15), whereas the H-2Kb antigen was absent from the cell surface as assayed by antibody-mediated complement-dependent cytotoxicity, an H-2Kb molecule was detected within the cell lysate as confirmed by direct immune precipitation with Kb-specific monoclonal antibodies. The product had an altered antigenic phenotype, since it reacted with only two anti-Kb monoclonal antibodies (Y-3 and EH-144) and not with a third (5F1.2). Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis identified the beta 2 microglobulin-associated, intracellular H-2Kb heavy chain to be slightly smaller in Mr than the H-2Kb of the parental cell line. Hybridization analysis revealed the Kb gene from the variant to be without gross alterations, and furthermore, identified a Kb mRNA species that was identical in size to wild-type Kb mRNA. Because complementation was not observed after somatic cell fusion of variant cells with BALB/c splenocytes, it appeared that the alteration in Kb expression was due to a cis-acting defect. In addition, DNA-mediated gene transfer of the wild-type Kb gene into the variant cell line resulted in expression of the Kb antigen on the cell surface, thus confirming that the defect in expression of the mutant Kb product was not due to other factors in the 69.9.15 cell line. Such findings are consistent with the conclusion that stable H-2Kb surface-negative somatic variants can arise due to limited alterations in the Kb gene, resulting in the synthesis of a class I molecule that is expressed only as an intracellular product.  相似文献   

9.
Conformational dependence of TCR contact residues of the H-2Kb molecule on the two buried tyrosine side chains of the vesicular stomatitis virus (VSV)-8 peptide was investigated by systematic substitutions of the tyrosines with phenylalanine, p-fluorophenylalanine (pFF), or p-bromophenylalanine (pBrF). The results of peptide competition CTL assays revealed that all of the peptide variants, except for the pBrF analogues, had near-native binding to the H-2Kb molecule. Epitope-mapped anti-H-2Kb mAbs detected conformational differences among H-2Kb molecules stabilized with these VSV-8 variants on RMA-S cells. Selective recognition of the VSV-8 analogues was displayed by a panel of three H-2Kb-restricted, anti-VSV-8 TCRs. Thus, these substitutions result in an antigenically significant conformational change of the MHC molecular surface structure at both C and D pockets, and the effect of this change on cognate T cell recognition is dependent on the TCR structure. Our results confirm that the structure of buried peptide side chains can determine the surface conformation of the MHC molecule and demonstrate that even a very subtle structural nuance of the buried side chain can be incorporated into the surface conformation of the MHC molecule. The ability of buried residues to modulate this molecular surface augments the number of residues on the MHC-peptide complex that can be recognized as "foreign" by the CD8+ T cell repertoire and allows for a higher level of antigenic discrimination. This may be an important mechanism to expand the total number of TCR specificities that can respond to a single peptide determinant.  相似文献   

10.
In C57BL/6 (B6, H-2b) mice, the secondary in vitro CTL response against Moloney leukemia virus is restricted and regulated by the H-2Db locus. B6.C-H- 2bm13 ( bm13 ) mice, however, carrying a mutation at the Db locus, show an increased H-2Kb-restricted CTL response without a demonstrable CTL component restricted by the mutant Dbm13 molecule (D----K shift). These purely Kb-restricted bm13 virus-specific CTL were incubated with a series of Kb mutant virus-infected target cells to study the effect of the mutations at the target cell level. Of six Kb-mutant virus-infected target cells tested, bm1 cells were not recognized and bm8 cells were recognized only marginally by bm13 virus-specific CTL, whereas bm3 , bm5 , bm6 , and bm11 cells were fully recognized. Thus, the bm3 , bm5 , bm6 , and bm11 Kb mutants fully share the relevant H-2K restriction specificities with H-2Kb, whereas the bm1 mutant totally and the bm8 mutant almost completely lack these specificities. This result differs markedly from the restriction site relationships among B6 and these Kb mutants in other antigenic systems. The most striking example concerns the bm11 mutant, which is fully recognized by Moloney-specific CTL, but not at all by Sendai, minor H (H-3.1, H-4.2), and sulfhydryl hapten-specific CTL. Monoclonal anti-H-2Kb antibody B8-3-24 inhibited virus-specific lysis by bm13 CTL of all Kb virus-infected mutant target cells to which this antibody binds. Lysis of bm5 and bm11 but not of bm3 target cells was inhibited, in line with the fact that B8-3-24 antibody does not bind bm3 . On the other hand, not only bm5 and bm11 but also bm3 virus-infected target cells blocked virus-specific lysis to the same extent as syngeneic bm13 target cells. Therefore, bm13 virus-specific CTL populations do not recognize the discrete cluster alteration in the Kbm3 molecule, as identified by antibody B8-3-24. The bm1 and the bm8 mutations, which have structural alterations in completely different sites of the Kb molecule, show complete or almost complete loss, respectively, of Kb-Moloney restriction sites. This finding supports the notion that these virus-specific CTL recognize conformational determinants rather than linear amino acid sequences.  相似文献   

11.
J L Portis  F J McAtee 《Immunogenetics》1981,12(1-2):101-115
The differential expression of H-2 specificities recognized by antibody and by cytotoxic T lymphocytes (CTL) has been studied using a clone (FY7) of the C57BL/6 leukemia cell line FBL-3 (H-2b/H-2b). Unlike C57BL/10 spleen cells, EL-4 lymphoma cells and Y57-2C leukemia cells (all H-2b/H-2b), FY7 failed to induce the primary in vitro generation of anti-H-2b CTL by (B10.A x A)F1 (H-2a/H-2a) or B10.D2 x BALB/c)F1 (H-2d/H-2d) responder spleen cells. In addition, FY7 was not lysed by, and did not competitively inhibit anti-H-2b CTL. Quantitative absorption tests with H-2Kb and H-2Db antisera revealed that FY7 expressed these antigens in quantitatively similar amounts to EL-4. The H-2Kb product of FY7 appeared to be identical with that of C57BL/10 spleen cells both in apparent molecular weight and isoelectric point. Yet FY7 failed to inhibit anti-H-2Kb CTL competitively in a cold target inhibition assay. Possible mechanisms are discussed for the lack of T-lymphocyte recognition of the H-2Kb-gene product expressed by FY7.  相似文献   

12.
A lectin-resistant variant of the murine EL4 lymphocytic leukemia cell line was selected in the presence of wheat germ agglutinin for low levels of cell-surface sialic acid. H-2Kb was the major internally radiolabeled H-2b molecule on the cell-surface of WD1, and it was not sialylated, as determined by two-dimensional gel analysis. Endo-beta-N-acetylglucosaminidase H treatment of the WD1 membrane fractions suggested that the oligosaccharides on the cell-surface H-2Kb molecule were complex, but nonsialylated. Monoclonal antibody inhibition of the allogeneically primed cell-mediated cytotoxicity (CMC) reaction indicated that the T cells (BALB/c anti-EL4; H-2d anti-H-2b) were specific only for the H-2Kb target cell antigen. These WD1 variant cells were used as targets in the CMC assay using anti-H-2Kb T cells and compared with the parent EL4 in vitro line. The change in the cell-surface oligosaccharide did not affect the susceptibility to lysis by the cytotoxic T lymphocytes even though there were 2.5-fold more H-2Kb antigens on the WD1 variant cell (1.5 X 10(5) sites/cell) than on the parent EL4 in vitro cell (5.9 X 10(4) sites/cell). It was possible to isolate highly purified preparations of H-2Kb from either the EL4 or the WD1 line using a monoclonal antibody affinity column. Interestingly, the variant WD1 cell would no longer grow in the peritoneal cavity of the syngeneic C57BL/6 mouse.  相似文献   

13.
Eleven long-term cytotoxic T lymphocyte (CTL) clones derived from C57BL/10 T cells sensitized in vivo and in vitro with trinitrobenzene sulfonate- (TNBS) treated syngeneic cells were all restricted to the K end of H-2b. The fine specificity of these CTL clones was analyzed by using H-2Kbm mutant target cells and H-2Kb-specific monoclonal antibodies (mAb). Seven distinct patterns of reactivity of the T cell clones could be observed with the use of six H-2Kbm mutant target cells. Further heterogeneity could be detected in terms of the ability of anti-Lyt-2 mAb to inhibit CTL activity. Cross-reactivity between H-2Kb + TNP and H-2Kbm + TNP was observed for all clones tested for bm5 and bm6, but less frequently for bm3 (8/11), bm8 (7/10), bm4 (4/11), and bm1 (3/11). It was further observed that amino acid substitutions located in the first domain only (one clone), or in the second domain only (six clones), or in either the first or the second domain (three clones) of the H-2Kb molecule could affect target cell recognition by a given T cell clone. the latter type of reactivity suggested that some clones recognized "conformational" determinants of the H-2 molecule, or that amino acid substitutions in one domain might influence the structure of the next domain. One H-2Kb + TNP-reactive clone exhibited a heteroclitic behavior with decreasing avidities for target cells expressing H-2Kbm8 + TNP, H-2Kb + TNP, and H-2Kbm8, which further extends the various patterns of T cell cross-reactions observed within a given class of MHC products. The use of H-2Kb-specific mAb in blocking studies as an attempt to define further the H-2Kb epitopes recognized by CTL clones indicated that: a) TNBS treatment may affect the antigenicity of the H-2Kb molecule as assessed by some mAb; and b) that the T cell clone-target cell interaction may or may not be inhibited by a given mAb, depending on structural variations of the H-2Kb molecule (use of H-2Kbm mutants) that do not affect the interaction itself. These results indicate that this type of analysis does not permit correlation of serologic- and T cell-defined epitopes.  相似文献   

14.
The tryptic peptide profile characteristics of the H-2D glycoprotein, isolated by immunoprecipitation from the MHC mutant mouse strain BALB/c-H-2Ddb, were compared with those of the H-2D molecule from the parent strain BALB/cKh-H-2Dd. At each stage of purification these molecules exhibited identical biochemical properties and on peptide mapping we observed that the Ddb molecule showed no detectable peptide differences from the Dd molecule of the nonmutant parent. These data thus support the concept that the site of mutation in this mutant strain, although located in the D region of the MHC, is distinct from the gene coding for molecules bearing the H-2.4 private specificity.  相似文献   

15.
Z K Blandova  A E Rat'kin 《Genetika》1987,23(7):1334-1336
A new spontaneous mutation of the H-2b haplotype was found in skin graft tests with BC3 mice derived from B10.R111 (71NS) and C57BL/10SnY outcrossing. The mutation site localized in the F1 test in the H-2Kb gene is nonidentical to and noncomplementary with bm1, bm3, bm4 mutations. The novel mutation is maintained as B10.R111-H-2bm25 strain.  相似文献   

16.
Liver tissue grafts between seven H-2 mutants and their parental strains have been studied. Each of these mutants was originally identified by reciprocal mutant—parental strain skin graft rejection. However, liver grafts among mutants and parental standard strains are not uniformly rejected. Liver graft rejection also fails to correlate with mutant—parental stimulation in CML and MLC. In addition, the immune reaction pattern of female mutant animals against grafts of male liver differs from the reaction pattern found in parental standard strains. Several explanations for the differences between immune response to liver and skin grafts are proposed, including different T cell subsets involved in recognition, availability of antigenic sites to immunocompetent cells, and structural differences between mutant and parental H-2 antigens. Abbreviations used in this paper: bml, 2, 3, 4,14; dml; fm2=mutants of strains C57BL/6, B10.D2 and B10.M respectively; B6=C57BL/6  相似文献   

17.
Immunohistochemical detection of increased levels of protein-associated nitrotyrosine has become widely used as a surrogate marker of in situ inflammation. However, the potential consequences of protein-associated nitrotyrosine formation in terms of cellular immune recognition has received surprisingly little attention. Using a well-defined I-E(K)-restricted epitope of pigeon cytochrome c, we previously demonstrated that conversion of a single tyrosine residue to nitrotyrosine can have a profound effect on recognition by CD4 T cells. In this study, we used the MHC class I-restricted epitope of lymphocytic choriomeningitis virus glycoprotein (gp33) to demonstrate that conversion of tyrosine to nitrotyrosine can also profoundly affect recognition of MHC class I-restricted epitopes. Conversion of the Y4 residue of the gp33 epitope to nitrotyrosine completely abrogated recognition by gp33-specific T cells from P14 TCR-transgenic mice. In contrast, CD8(+) T cells specific for "nitrated gp33" (NY-gp33) can be readily elicited in C57BL/6 mice after immunization with NY-gp33 peptide. Interestingly, T-T hybridomas specific for NY-gp33 peptide were found to fall into two distinct subsets, being specific for NY-gp33 presented in the context of either H-2D(b) or H-2K(b). This latter result is surprising in light of previous structural studies showing that Y4 comprises a critical TCR-contact residue when presented by H-2D(b) but that the same residue points downward into the peptide-binding groove of the MHC when presented by H-2K(b). Together, these results indicate that nitrotyrosine formation can impact T cell recognition both directly, through alteration of TCR-contact residues, or indirectly, through alterations in MHC-contact positions.  相似文献   

18.
We have previously shown that sc immunization of C57BL/10 (H-2b) mice with the tobacco mosaic virus protein (TMVP) or with its tryptic peptide number 8, representing residues 93-112 of TMVP, induces T cells which proliferate in vitro in response to TMVP and to peptide 8. In contrast, immunization of B10.BR (H-2k) mice either with TMVP or with peptide 8 induces T cells which respond in vitro to the homologous but not the heterologous Ag. In the present article , we report that in the B10.BR (H-2k) strain, ip prepriming with (TMVP) 7 days prior to sc immunization with peptide 8 causes a drastic reduction in the in vitro proliferative response of peptide 8-specific T cells while no such effect is seen in the congenic C57BL/10 (H-2b) strain. This suppression of T cell responsiveness can be transferred with TMVP-primed spleen cells. Moreover, deleting T cells from the transferred spleen cells abrogates the suppressive effect. In both H-2 haplotypes, ip prepriming with peptide 8 causes suppression of the proliferative T cell response induced by subsequent immunization with peptide 8. This prepriming has no effect on the response to TMVP immunization of B10.BR mice but does effect the response of C57BL/10 mice. Using various synthetic peptides to analyze the specificity of the suppression, we have determined that (1) T cells involved in the suppression of the proliferative T cell response to a single peptide determinant do not suppress the proliferative T cell response to other determinants on the protein antigen and (2) these T cells with suppressor function, and proliferating T cells which are ultimately regulated, can exhibit specificity for the same epitope. These studies suggest that there may exist fundamental differences as to how T cells which participate in suppression an proliferating T cells (which include mainly T helper cells) recognize protein antigens.  相似文献   

19.
The H-2 dm1 mutation and Qa antigens   总被引:2,自引:0,他引:2  
The effect of the H-2dm1 mutation on Qa-m2 expression was examined. The mutant strain B10.D2-H-2dm1 showed a fourfold increase in Qa-m2 expression when compared with the parental strain B10.D2. Qa-m2 molecules immunoprecipitated from B10.D2-H-2dm1, C57BL/10, and B10.D2 spleen cells were identical by two-dimensional (2-D) gel electrophoresis [isoelectric focusing (IEF) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE]). It is likely therefore that the increased Qa-m2 expression is not due to gross structural alterations of the Qa-m2 molecule; in the present study, alternative explanations are discussed.  相似文献   

20.
Structural studies of the H-2 gene products from a group of five closely related but independent C57BL/6 H-2 mutant mice were undertaken. Each of the mutants exhibits reciprocal graft rejection with the parent. The group is remarkable, however, because each member of this group can accept skin grafts from any other member. The results of biochemical analysis of the H-2 glycoproteins from two of these related mutants, bm5 and bm16, are presented in this report. Evidence is given that the H-2K molecules from these two mutants are identical to each other based on comparative tryptic peptide mapping profiles with the parent. From partial amino acid sequence analysis, K products of both mutants have at least one common difference from the parental type located at residue number 116. Definitive studies established that in both bm5 and bm16 a tryosine found in the parent molecule is substituted with a phenylalanine in the mutant. These results show that a biochemical difference between the K products of the two mutants and of the parent can be detected, that the mutants appear to be identical with one another even though they arose independently, and that they differ from the other H-2K b mutants analyzed.Abbreviations used in this paper B6 C57BL/6Kh - bm5 B6-H-2bm5 - bm6 B6-H-2 bm6 - bm7 B6.C-H-2 bm7 - bm9 B6.C-H-2 bm9 - bm16 B6-H-2 bm16 - D H-2D - K H-2K - MHC major histocompatibility complex  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号