首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nitric oxide (NO) plays an important role in mediating many aspects of inflammatory responses. NO is an effector molecule of cellular injury, and can act as an anti-oxidant. It can modulate the release of various inflammatory mediators from a wide range of cells participating in inflammatory responses (e.g., leukocytes, macrophages, mast cells, endothelial cells, and platelets). It can modulate blood flow, adhesion of leukocytes to the vascular endothelium and the activity of numerous enzymes, all of which can have an impact on inflammatory responses. In recent years, NO-releasing drugs have been developed, usually as derivatives of other drugs, which exhibit very powerful anti-inflammatory effects.  相似文献   

3.
4.
Nitric oxide: a key regulator of myeloid inflammatory cell apoptosis   总被引:7,自引:0,他引:7  
Apoptosis of inflammatory cells is a critical event in the resolution of inflammation, as failure to undergo this form of cell death leads to increased tissue damage and exacerbation of the inflammatory response. Many factors are able to influence the rate of apoptosis in neutrophils, eosinophils, monocytes and macrophages. Among these is the signalling molecule nitric oxide (NO), which possesses both anti- and proapoptotic properties, depending on the concentration and flux of NO, and also the source from which NO is derived. This review summarises the differential effects of NO on inflammatory cell apoptosis and outlines potential mechanisms that have been proposed to explain such actions.  相似文献   

5.
Nitric oxide and promotion of cardiac myocyte apoptosis   总被引:1,自引:0,他引:1  
The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival.  相似文献   

6.
Nitric oxide and promotion of cardiac myocyte apoptosis   总被引:1,自引:0,他引:1  
The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival. (Mol Cell Biochem 263: 35–53, 2004)  相似文献   

7.
Nitric oxide as a signal in plants.   总被引:44,自引:0,他引:44  
Molecular, genetic and biochemical studies have identified key players in the signaling pathways regulating growth and development, as well as defense responses in plants. Recently, nitric oxide (NO) - the versatile and powerful effector of animal redox-regulated signaling and immune responses - was shown to mediate plant defense responses against pathogens. Interestingly, several key components involved in NO-mediated signaling in animals also appear to be operative in plants.  相似文献   

8.
植物中的一氧化氮信号分子   总被引:2,自引:0,他引:2  
肖强  郑海雷 《生物学通报》2005,40(11):17-18
综述了NO分子在植物中的生物合成、主要生理功能以及在耐受生物胁迫和非生物胁迫响应中的作用,以及植物对NO信号转导过程中cGMP途径和其他途径的关系。  相似文献   

9.
We previously showed that NO induces apoptosis in thymocytes via a p53-dependent pathway. In the present study, we investigated the role of caspases in this process. The pan-caspase inhibitor, ZVAD-fmk, and the caspase-1 inhibitor, Ac-YVAD-cho, both inhibited NO-induced thymocyte apoptosis in a dose-dependent manner, whereas the caspase-3 inhibitor, Ac-DEVD-cho, had little effect even at concentrations up to 500 microM. ZVAD-fmk and Ac-YVAD-cho were able to inhibit apoptosis when added up to 12 h, but not 16 h, after treatment with the NO donor S-nitroso-N-acetyl penicillamine (SNAP). Caspase-1 activity was up-regulated at 4 h and 8 h and returned to baseline by 24 h; caspase-3 activity was not detected. Cytosolic fractions from SNAP-treated thymocytes cleaved the inhibitor of caspase-activated deoxyribonuclease. Such cleavage was completely blocked by Ac-YVAD-cho, but not by Ac-DEVD-cho or DEVD-fmk. Poly(ADP-ribose) polymerase (PARP) was also cleaved in thymocytes 8 h and 12 h after SNAP treatment; addition of Ac-YVAD-cho to the cultures blocked PARP cleavage. Furthermore, SNAP induced apoptosis in 44% of thymocytes from wild-type mice; thymocytes from caspase-1 knockout mice were more resistant to NO-induced apoptosis. These data suggest that NO induces apoptosis in thymocytes via a caspase-1-dependent but not caspase-3-dependent pathway. Caspase-1 alone can cleave inhibitor of caspase-activated deoxyribonuclease and lead to DNA fragmentation, thus providing a novel pathway for NO-induced thymocyte apoptosis.  相似文献   

10.
Nitric oxide as a signal in blood vessels.   总被引:18,自引:0,他引:18  
In the five years since the discovery that nitric oxide is produced as a signal in blood vessels, a great deal has been discovered about the processes involved. This article reviews current knowledge about the vascular cell synthesis, effects and subsequent destruction of this messenger molecule.  相似文献   

11.
Nitric oxide (NO) is a small gaseous molecule, with a free radical nature that allows it to participate in a wide spectrum of biologically important reactions. NO is an endogenous product in plants, where different biosynthetic pathways have been proposed. First known in animals as a signaling molecule in cardiovascular and nervous systems, it has turned up to be an essential component for a wide variety of hormone-regulated processes in plants. Adaptation of plants to a changing environment involves a panoply of processes, which include the control of CO2 fixation and water loss through stomatal closure, rearrangements of root architecture as well as growth restriction. The regulation of these processes requires the concerted action of several phytohormones, as well as the participation of the ubiquitous molecule NO. This review analyzes the role of NO in relation to the signaling pathways involved in stomatal movement, plant growth and senescence, in the frame of its interaction with abscisic acid, auxins, gibberellins, and ethylene.  相似文献   

12.
Nitric oxide as an antioxidant.   总被引:21,自引:0,他引:21  
Benzoate monohydroxy compounds, and in particular salicylate, were produced during interaction of ferrous complexes with hydrogen peroxide (Fenton reaction) in a N2 environment. These reactions were inhibited when Fe complexes were flushed, prior to the addition in the model system, by nitric oxide. Methionine oxidation to ethylene by Fenton reagents was also inhibited by nitric oxide. Myoglobin in several forms such as metmyoglobin, oxymyoglobin, and nitric oxide-myoglobin were interacted with an equimolar concentration of hydrogen peroxide. Spectra changes in the visible region and the changes in membrane (microsomes) lipid peroxidation by the accumulation of thiobarbituric acid-reactive substances (TBA-RS) were determined. The results showed that metmyoglobin and oxymyoglobin were activated by H2O2 to ferryl myoglobin, which initiates membrane lipid peroxidation; but not nitric oxide-myoglobin, which, during interaction with H2O2, did not form ferryl but metmyoglobin which only poorly affected lipid peroxidation. It is assumed that nitric oxide, liganded to ferrous complexes, acts to prevent the prooxidative reaction of these complexes with H2O2.  相似文献   

13.
Boyd CS  Cadenas E 《Biological chemistry》2002,383(3-4):411-423
Nitric oxide, generated by endogenous nitric oxide synthases or nitric oxide donors, can promote or prevent apoptosis induced by diverse pro-apoptotic stimuli in cell culture models. Both mitochondrial-dependent and -independent apoptotic signaling pathways mediate this dichotomous cellular response to nitric oxide. The molecular mechanisms behind these effects are complex and involve a number of nitrogen oxide-related species that are more reactive than nitric oxide itself. The local cellular environment plays a dynamic role in determining the nature and concentration of these species. Important components of the microenvironment include: the cellular redox state, glutathione, transition metals and the presence of other oxygen- and nitrogen-centered radicals. In particular, redox-sensitive nitrosating species are favorably generated under physiological conditions and capable of modifying multiple cell signaling pathways through reversible S-nitrosation reactions. Cytochrome c release from mitochondria is an important mechanism for the activation of caspase-3 and the initiation of cell death in response to 'intrinsic' pro-apoptotic stimuli, including oxidative and nitrosative stress. In turn, caspases and mitogen associated protein kinases may modulate cytochrome c release through their effects on the Bcl-2 family of proteins. This review will focus on (i) the importance of the cellular environment in determining the fate of nitric oxide and (ii) the ability of S-nitrosation to regulate mitochondrial-dependent apoptosis at the level of mitochondrial bioenergetics, cytochrome c release, caspases, mitogen associated protein kinases, and the Bcl-2 family of proteins.  相似文献   

14.
Cadmium (Cd2+) is a potent toxic metal for both plants and animals. Chronic exposure to low doses of Cd2+ results in damage to several organs. We have previously reported that Cd2+ induces apoptosis in anterior pituitary cells by a caspase- and oxidative stress-dependent mechanism. Nitric oxide (NO) synthesis is affected by Cd2+ in several systems. NO has been shown to be either cytoprotective or cytotoxic in many systems. The aim of this study was to evaluate the possible participation of NO in the cytotoxic effect of Cd2+ on rat anterior pituitary cells. Cell viability was evaluated by mitochondrial dehydrogenase activity assay and confirmed by microscopy, studying nuclear morphology. Here we show that DETA NONOate ((Z)-1-[2 (2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long-term NO donor, at concentrations below 0.5 mM, reduces nuclear condensation and fragmentation and reverses the decrease in cellular activity induced by Cd2+. Cd2+, by itself, induced NO synthesis, and inhibition of this synthesis enhanced Cd2+ cytotoxicity. NO also prevented caspase-3 activation and lipidic peroxidation induced by Cd2+. The NO/cGMP pathway does not seem to be involved in the cytoprotective effect of NO. These results indicate that NO has a cytoprotective role in Cd2+ -induced apoptosis, suggesting that endogenous NO could have a physiological role in protecting anterior pituitary cells.  相似文献   

15.
Nitric oxide as a secretory product of mammalian cells.   总被引:219,自引:0,他引:219  
C Nathan 《FASEB journal》1992,6(12):3051-3064
Evolution has resorted to nitric oxide (NO), a tiny, reactive radical gas, to mediate both servoregulatory and cytotoxic functions. This article reviews how different forms of nitric oxide synthase help confer specificity and diversity on the effects of this remarkable signaling molecule.  相似文献   

16.
Nitric oxide (NO): an effector of apoptosis   总被引:8,自引:0,他引:8  
  相似文献   

17.
近年来的研究发现,一氧化氮(nitricoxide,NO)在植物抗病反应中具有重要作用,本文概述了植物中NO的来源、NO在植物抗病反应中的信号传导作用、NO与植物中其它信号分子之间的相互作用以及NO的研究进展。  相似文献   

18.
The study was aimed to search out the probable molecule behind the activation of a broad spectrum resistance during Pseudomonas aeruginosa WS-1 mediated induced systemic resistance (ISR) in Capsicum annuum where plants were challenged inoculated with its pathogen Colletotrichum capsici 24 h after induction of ISR. On the fourth day after pathogen inoculation a significant increase of pathogenesis-related (PR) proteins, other defence enzymes and phenolics as well as a two-fold increase of nitric oxide (NO) a potent defence signalling molecule were observed. Treatment of the host with NO donor also induced the same defence molecule in a similar manner. Results suggest the possible signalling role of NO in ISR during crosstalk between ISR inducing agent and pathogen within the host system.  相似文献   

19.
20.
Production of nitric oxide (NO) by mitochondrial membranes as methemoglobin formation sensitive to N(G)-methyl-l-arginine inhibition and mitochondrial O(2) consumption in metabolic states 3 and 4 and the respiratory control (state 3/state 4) were measured at early stages of rat thymocyte apoptosis. Programmed cell death was induced by addition of methylprednisolone and etoposide to thymocyte suspensions. Increased NO production by mitochondrial membranes was observed after 30 min of methylprednisolone and etoposide addition and was accompanied by mitochondrial respiratory impairment as an early phenomenon in apoptotic thymocytes. The respiratory control in isolated mitochondria from untreated thymocytes was 4.2 +/- 0.2 and decreased to 3.1 +/- 0.2 and 1.9 +/- 0.3 after 1 h of methylprednisolone and etoposide treatment, respectively. The low mitochondrial respiratory control was accompanied by a marked decrease in GSH and cytochrome c content. Moreover, an inhibitory effect in the amount of apoptosis due to thymocyte pretreatment with N(G)-methyl-l-arginine and N(omega)-nitro-(l)-arginine (l-NNA), indicate that nitric oxide production is closely involved in the signaling of rat thymocyte apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号