首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. [35S]methionine incorporation into proteins of either T. cruzi epimastigotes or trypomastigotes was drastically inhibited by low concentrations of crystal violet in a dose-dependent manner. This inhibition was not due to ATP depletion since cellular ATP levels did not change significantly after incubation of epimastigotes with 50 μM crystal violet for similar periods of time, and was unaffected by changes in the extracellular free calcium concentration. Although crystal violet was able to inhibit protein synthesis in a cell-free system from T. cruzi epimastigotes, half maximal inhibition was at 1 mM, a concentration three orders of magnitude higher than those that inhibited protein synthesis in intact cells. On the other hand, crystal violet was able to inhibit total [35S]methionine uptake at similar concentrations to those that inhibited protein synthesis while addition of increasing concentrations of cold methionine to the incubation medium protected the cells against crystal violet inhibition. Crystal violet also inhibited total [3H]proline uptake thus indicating that it has a general inhibitory effect upon the transport of amino acids, and not specifically upon methionine. These results indicate that inhibition of protein synthesis by crystal violet is probably due to inhibition of amino acid uptake.  相似文献   

2.
ABSTRACT. We have demonstrated previously that crystal violet induces a rapid, dose-related collapse of the inner mitochondrial membrane potential of Trypanosoma cruzi epimastigotes. In this work, we show that crystal violet-induced dissipation of the membrane potential was accompanied by an efflux of Ca2+ from the mitochondria. In addition, crystal violet inhibited the ATP-dependent, oligomycin-, and antimycin A-insensitive Ca2+ uptake by digitonin-permeabilired epimastigotes. Crystal violet also induced Ca2+ release from the mitochondria and endoplasmic reticulum of digitonin-permeabilized trypomastigotes. Furthermore, crystal violet inhibited Ca2+ uptake and the (Ca2+-Mg2+)ATPase of a highly enriched plasma membrane fraction of epimastigotes, thus indicating an inhibition of other calcium transport mechanisms of the cells. Disruption of Ca2+ homeostasis by crystal violet may be a key process leading to trypanosome cell injury by this drug.  相似文献   

3.
Trypanosoma cruzi activates the kinin pathway through the activity of its major cysteine proteinase, cruzipain. Because kininogen molecules may be displayed on cell surfaces by binding to glycosaminoglycans, we examined whether the ability of cruzipain to release kinins from high molecular weight kininogen (HK) is modulated by heparan sulfate (HS). Kinetic assays show that HS reduces the cysteine proteinase inhibitory activity (K(i app)) of HK about 10-fold. Conversely, the catalytic efficiency of cruzipain on kinin-related synthetic fluorogenic substrates is enhanced up to 6-fold in the presence of HS. Analysis of the HK breakdown products generated by cruzipain indicated that HS changes the pattern of HK cleavage products. Direct measurements of bradykinin demonstrated an up to 35-fold increase in cruzipain-mediated kinin liberation in the presence of HS. Similarly, kinin release by living trypomastigotes increased up to 10-fold in the presence of HS. These studies suggest that the efficiency of T. cruzi to initiate kinin release is potently enhanced by the mutual interactions between cruzipain, HK, and heparan sulfate proteoglycans.  相似文献   

4.
The saline extract of Bauhinia bauhinioides dry seeds was shown to inhibit cruzipain, a cysteine proteinase from Trypanosoma cruzi. The inhibitory activity was assigned to a protein with 164 amino acid residues and molecular mass of 18 034 Da that was purified by chromatography on DEAE-Sephadex, trypsin-Sepharose (removal of trypsin inhibitors), Mono Q and a reversed-phase C4 column. The primary structure is homologous to other plant Kunitz-type inhibitors, but it lacks cysteine residues and therefore the disulfide bridges. No methionine residue was identified by amino acid sequencing. The inhibition of cruzipain fits into a slow-tight binding mechanism with a low dissociation constant (Ki 1.2 nM). The studied Bauhinia protein also inhibits cruzain (Ki 0.3 nM), a C-terminally truncated recombinant species of cruzipain. Cathepsin L, a cysteine proteinase with high homology to cruzipain, is also inhibited (Ki 0.22 nM), but not cathepsin B, papain, bromelain or ficin.  相似文献   

5.
Epimastigotes of different stocks of Trypanosoma cruzi contain similar levels of proteinase activity on azocasein; amastigotes and trypomastigotes contain 10-fold lower levels of this proteolytic activity, which seems, therefore, to be developmentally regulated. The proteinase could be detected as a broad band, centered at about 60 kDa, which in some cases resolved into two close bands, in (a) SDS-polyacrylamide gels containing fibrinogen, and (b) Western blots probed with a polyclonal rabbit antiserum prepared against purified cysteine proteinase. No proteinase activity was observed at molecular weights lower than 55 kDa. The results show that the enzyme previously purified is the major cysteine proteinase present in epimastigotes of all stocks of T. cruzi tested.  相似文献   

6.
The molecular mass of cruzipain, the major cysteine proteinase from Trypanosoma cruzi epimastigotes, is 36.3 kDa as calculated from its sequence; this value can increase to about 41 kDa if the three potential N-glycosylation sites are glycosylated in vivo. Yet the apparent molecular mass of the enzyme, as determined by SDS-polyacrylamide gel electrophoresis, has been reported in a range of values from 60 to 40 kDa. We show that the purified enzyme had apparent molecular masses ranging from 51 to 33 kDa, depending on the experimental conditions. This variation is likely to be due to both N-glycosylation and the presence of several disulfide bridges, which make electrophoretic mobility dependent on acrylamide concentration, and reduction and/or boiling of the sample.  相似文献   

7.
A chemically defined in vitro differentiating condition was used to study the potential role of cyclic AMP (cAMP) and adenylate cyclase activators on the transformation of Trypanosoma cruzi epimastigotes to the infective metacyclic trypomastigotes (metacyclogenesis). It was observed that both addition of cAMP analogs or adenylate cyclase activators to the differentiating medium stimulated the transformation of epimastigotes to metacyclic trypomastigotes. These results were further corroborated by showing that inhibitors of cAMP phosphodiesterase were stimulatory while activators of this enzyme inhibited the metacyclogenesis process. On the other hand, inhibitors of calmodulin inhibited the transformation of epimastigotes to metacyclic trypomastigotes, suggesting that T. cruzi adenylate cyclase might be activated by calmodulin. In addition, the results strongly suggest that guanine nucleotide binding proteins are involved in T. cruzi adenylate cyclase activation. This system may be useful for studying cell differentiation mechanisms in eukaryotes.  相似文献   

8.
Nitric oxide (NO) is a pluripotent regulatory molecule showing, among others, an antiparasitic activity. Moreover, NO inhibits cysteine proteinase action by nitrosylating the Cys catalytic residue. In the present study, the inhibitory effect of the substrate N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methyl coumarin) and of NO on the catalytic activity of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi (the hemoflagellate protozoan parasite which causes the American trypanosomiasis), is reported. In particular, NO-donors S-nitroso-glutathione (GSNO), (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), 3-morpholinosydnonimine (SIN-1), S-nitroso-acetyl-penicillamine (SNAP), and sodium nitroprusside (SNP) dose-dependently inhibited cruzipain, this effect being likely attributable to the S-nitrosylation of the Cys25 catalytic residue. These results were analyzed in parallel with those concerning the inhibitory effect of the substrate and of NO on the catalytic activity of falcipain, the cruzipain-homologous cysteine proteinase from Plasmodium falciparum. The modulation of the cruzipain and falcipain activity by NO may be relevant in developing new strategies against T. cruzi and P. falciparum in human host. As a whole, the NO-mediated S-nitrosylation of pathogenic viral, bacterial, fungal, and parasitic cysteine proteinases may represent a general mechanism of antimicrobial and antiparasitic host defences.  相似文献   

9.
Differentiation of Trypanosoma cruzi epimastigotes to metacyclic trypomastigotes occurs in the insect rectum, after adhesion of the epimastigotes to the intestinal wall. We investigated the effect of the nutritional stress on the metacyclogenesis process in vitro by incubating epimastigotes in the chemically defined TAU3AAG medium supplemented with different nutrients. Addition of fetal bovine serum induced epimastigote growth but inhibited metacyclogenesis. In this medium, few parasites attached to the substrate. Ultrastructural analysis demonstrated reservosomes at the posterior end of the epimastigotes. Incubation of the cells in TAU3AAG medium containing gold-labeled transferrin resulted in high endocytosis of the marker by both adhered and free-swimming epimastigotes. No intracellular gold particles could be detected in trypomastigotes. Addition of transferrin gold complexes to adhered epimastigotes cultivated for 4 days in TAU3AAG medium resulted in decrease of both metacyclogenesis and adhesion to the substrate, as compared with parasites maintained in transferrin-free medium. Adhesion to the substrate is triggered by nutritional stress, and proteins accumulated in reservosomes are used as energy source during the differentiation. A close relationship exists among nutritional stress, endocytosis of nutrients, adhesion to the substrate, and cell differentiation in T. cruzi epimastigotes.  相似文献   

10.
An increasing number of protein kinases (PKs) of parasitic protozoa are being evaluated as drug targets. Some PK inhibitors display antiproliferative effects on protozoa. We tested three PK inhibitors on the growth and ultrastructure of epimastigotes of Trypanosoma cruzi and the effect of these drugs on intracellular amastigotes. They were staurosporine (serine/threonine kinase inhibitor), genistein (tyrosine kinase inhibitor), and wortmannin (phosphatidylinositol 3' (PI3) kinase inhibitor). All drugs inhibited epimastigote growth at the concentrations tested. Wortmannin inhibited parasite growth at the lowest concentrations. However, staurosporine was the most effective after 24 h treatment and genistein caused the stronger inhibition during the whole treatment (60-70% inhibition). The IC50 were: staurosporine: 6.43+/-1.28 microM; genistein: 6.54+/-1.86 microM; and wortmannin: 0.056+/-0.014 microM. These PK inhibitors had strong ultrastructural effects on the epimastigotes: abnormal chromatin condensation of the nucleus; loose flagellar membrane with the formation of blebs; incomplete cell division; autophagosomes and myelin-like figures. These drugs did not interfere with the division of intracellular amastigotes or with its differentiation to trypomastigotes. However, as trypanosomes have kinomes that contain a large set of protein kinases and phosphatases, PKs should not be disregarded as an important target for chemotherapy of Chagas disease.  相似文献   

11.
Investigation of protease activities during the transformation of Trypanosoma cruzi epimastigotes into metacyclic trypomastigoes (metacyclo-genesis) revealed three major components with apparent molecular weights of 65, 52, and 40 kDa. The 65-kDa protease is a metacyclic trypomastigote stage-specific protease with an isoelectric point of 5.2 whose activity is inhibited by 1,10-phenanthroline, suggesting that it might be a metalloprotease. The 52-kDa component is also a metalloprotease which is constitutively expressed in epimastigotes and metacyclic trypomastigoes. On the other hand, the 40-kDa component is apparently made up of several isoforms of a cysteine protease which is expressed in much higher levels in epimastigotes than in metacyclic trypomastigote forms. The fact that the 65- and 40-kDa proteases are developmentally regulated suggests that proteases might be important for T. cruzi differentiation. Accordingly, T. cruzi metacyclogenesis is blocked by metallo- and cysteine-protease inhibitors.  相似文献   

12.
Plasmatic levels of pregnancy zone protein (PZP) increase in children with acute Chagas disease. PZP, as well as alpha2-macroglobulin (alpha2-M), are able to interact with Trypanosoma cruzi proteinases. The interaction of alpha2-M and PZP with cruzipain, the major cysteine proteinase of T. cruzi, was investigated. Several molecular changes on both alpha-M inhibitors under reaction with cruzipain were found. PAGE analysis showed: (i) formation of complexes of intermediate mobility and tetramerization of native alpha2-M and PZP, respectively; (ii) limited proteolysis of bait region in alpha2-M and PZP, and (iii) covalent binding of cruzipain to PZP and alpha2-M. Conformational and structural changes experimented by alpha-Ms correlate with modifications of the enzyme electrophoretic mobility and activity. Cruzipain-alpha-M complexes were also detected by gelatin SDS-PAGE and immunoblotting using polyclonal anti-cruzipain antibodies. Concomitantly, alpha2-M and PZP impaired the activity of cruzipain towards Bz-Pro-Phe-Arg-pNA substrate. In addition, alpha-Ms were able to form covalent complexes with membrane isoforms of cysteine proteinases cross-reacting with cruzipain. The present study suggests that both human alpha-macroglobulin inhibitors could prevent or minimize harmful action of cruzipain on host's molecules and hypothetically regulate parasite functions controlled by cruzipain.  相似文献   

13.
A Trypanosoma cruzi cysteine protease inhibitor, termed chagasin, is the first characterized member of a new family of tight-binding cysteine protease inhibitors identified in several lower eukaryotes and prokaryotes but not present in mammals. In the protozoan parasite T.cruzi, chagasin plays a role in parasite differentiation and in mammalian host cell invasion, due to its ability to modulate the endogenous activity of cruzipain, a lysosomal-like cysteine protease. In the present work, we determined the solution structure of chagasin and studied its backbone dynamics by NMR techniques. Structured as a single immunoglobulin-like domain in solution, chagasin exerts its inhibitory activity on cruzipain through conserved residues placed in three loops in the same side of the structure. One of these three loops, L4, predicted to be of variable length among chagasin homologues, is flexible in solution as determined by measurements of (15)N relaxation. The biological implications of structural homology between chagasin and other members of the immunoglobulin super-family are discussed.  相似文献   

14.
Abstract Epimastigotes of the American Trypanosome Trypanosoma rangeli contain a very low cysteine proteinase (CP) activity. The enzyme was purified to homogeneity by affinity chromatography on ConA-Sepharose and Cystatin-Sepharose. This CP had a similar apparent molecular mass and an identical N-terminal sequence (15 amino acids) as compared with cruzipain from Trypanosoma cruzi ; cross-reacted immunologically with the latter enzyme, it was inhibited by E-64 and TLCK, but not by PMSF, o-phenanthroline or Pepstatin, and was able to use the same substrates, although with different order of effectiveness and optimum pH.  相似文献   

15.
Several studies indicate that the activity of cruzipain, the main lysosomal cysteine peptidase of Trypanosoma cruzi, contributes to parasite infectivity. In addition, the parasitic invasion process of mammalian host cells is described to be dependent on the activation of the host TGF-β signaling pathway by T. cruzi. Here, we tested the hypothesis that cruzipain could be an important activator of latent TGF-β and thereby trigger TGF-β-mediated events crucial for the development of Chagas disease. We found that live epimastigotes of T. cruzi, parasite lysates and purified cruzipain were able to activate latent TGF-β in vitro. This activation could be inhibited by the cysteine peptidase inhibitor Z-Phe-Ala-FMK. Moreover, transfected parasites overexpressing chagasin, a potent endogenous cruzipain inhibitor, prevented latent TGF-β activation. We also observed that T. cruzi invasion, as well as parasite intracellular growth, were inhibited by the administration of Z-Phe-Ala-FMK or anti-TGF-β neutralizing antibody to Vero cell cultures. We further demonstrated that addition of purified cruzipain enhanced the invasive activity of trypomastigotes and that this effect could be completely inhibited by addition of a neutralizing anti-TGF-β antibody. Taken together, these results demonstrate that the activities of cruzipain and TGF-β in the process of cell invasion are functionally linked. Our data suggest that cruzipain inhibition is an interesting chemotherapeutic approach for Chagas disease not only because of its trypanocidal activity, but also due to the inhibitory effect on TGF-β activation.  相似文献   

16.
Membrane fragments from trypomastigote forms of Trypanosoma cruzi inhibited the association of intact trypomastigotes with rat heart myoblasts whereas a similar preparation from non-invasive epimastigotes did not. Furthermore, killed trypomastigotes bound to the host cell surface and prevented the attachment of living organisms. Conversely, the extent of association of killed parasites with the host cells was reduced by the presence of living flagellates. These results suggest the presence of a distinct structure(s) on the surface of rat heart myoblasts to which infective forms of T. cruzi can bind.  相似文献   

17.
Papain-like cysteine proteases of pathogenic protozoa play important roles in parasite growth, differentiation and host cell invasion. The main cysteine proteases of Trypanosoma cruzi (cruzipain) and of Trypanosoma brucei (brucipain) are validated targets for the development of new chemotherapies. These proteases are synthesized as precursors and activated upon removal of the N-terminal prodomain. Here we report potent and selective inhibition of cruzipain and brucipain by the recombinant full-length prodomain of cruzipain. The propeptide did not inhibit human cathepsins S, K or B or papain at the tested concentrations, and moderately inhibited human cathepsin V. Human cathepsin F was very efficiently inhibited (K(i) of 32 pm), an interesting finding indicating that cruzipain propeptide is able to discriminate cathepsin F from other cathepsin L-like enzymes. Comparative structural modeling and analysis identified the interaction between the beta1p-alpha3p loop of the propeptide and the propeptide-binding loop of mature enzymes as a plausible cause of the observed inhibitory selectivity.  相似文献   

18.
Characteristics of the association of circulating (trypomastigote) and cultured (epimastigote) forms of Trypanosoma cruzi with macrophages were studied. Treatment of mouse macrophages with the anti-microfilament drug cytochalasin D severely reduced the ability of these cells to bind either trypomastigotes or epimastigotes. Instead, treatment with the antimicrotubule drug colchicine or 2-deoxyglucose afforded differential effects because epimastigote but not trypomastigote association with the macrophages was significantly inhibited. Prior treatment of epimastigotes with either trypsin or neuraminidase decreased their uptake by macrophages whereas treatment of trypomastigotes with either enzyme increased it. Pretreatment of macrophages with neuraminidase did not affect epimastigote uptake but reduced that of trypomastigotes. Pretreatment of macrophages with trypsin reduced the uptake of both forms of the parasite. However, quantitative differences in the extent of such reduction were noted when varying concentrations of trypsin were used, epimastigote uptake being more drastically affected. These results suggest that the initial interaction of virulent circulating trypomastigote and the attenuated cultured epimastigote forms of T. cruzi to macrophages may involve attachment via different surface structures.  相似文献   

19.

Background

Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas'' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs) on Trypanosoma cruzi, the etiologic agent of Chagas'' disease.

Methodology and Principal Findings

HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages.

Conclusions and Significance

The results contribute to understand the possible role of aspartic peptidases in T. cruzi physiology, adding new in vitro insights into the possibility of exploiting the use of HIV-PIs in the clinically relevant forms of the parasite.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号