首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel immunoassay specific for the osteoclast-produced TRAP isoform 5b has been developed recently. By means of this assay we studied the usefulness of serum TRAP-5b in monitoring the response to palliative treatment with pamidronate in breast cancer patients with bone metastases. We correlated serum TRAP-5b levels with pain intensity and intake of analgesics to assess the possible utility of the marker in identifying patients who could benefit from pamidronate treatment. Twenty-eight advanced breast cancer patients with bone metastases entered the study. Patients were treated according to the following schedule: two two-week cycles of 60 mg/week pamidronate IV, with a three-week interval in between (six infusions over seven weeks), followed by one infusion every three weeks for a total of 24 infusions over a treatment period of 61 weeks. Blood samples were taken before the start of treatment and before each infusion during two treatment cycles. To measure serum TRAP levels we employed the new immunoassay kit BoneTRAP produced by Suomen Bioanalytiikka Oy (SBA), Oulu, Finland. In order to assess the usefulness of this marker in evaluating the response to pamidronate treatment we divided patients into two groups (group A, worsened; group B, improved) with respect to pain trend and analgesic intake. Our results did not show any statistically significant difference in baseline serum TRAP levels in the two groups. However, one week after the first pamidronate infusion TRAP-5b serum levels decreased by 39% and 18% in groups A and B, respectively (p=0.01); these levels persisted throughout the treatment period. In conclusion, a decrease in TRAP-5b serum levels may reflect the pharmacological activity of pamidronate and seems to predict pain relief and a reduction in analgesic consumption.  相似文献   

2.
ObjectivesThe extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort.MethodsBone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6–18 years with an estimated glomerular filtration rate (eGFR) of 10–60 ml/min/1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group.ResultsStandardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score.ConclusionMarkers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity.  相似文献   

3.
We measured serum tartrate-resistant acid phosphatase (TRAP) activity in 120 healthy subjects and 35 patients with multiple myeloma as well as urinary hydroxyproline excretion in the myeloma patients. Young subjects (0-18 years) showed higher TRAP levels (ANOVA p less than 0.01) compared with the other age classes due to the more active bone remodelling processes associated with growth. Myeloma patients with bone lytic lesions (MM+) showed higher serum TRAP values than controls (p less than 0.01). Hydroxyproline excretion was higher in MM+ patients but the difference between patients with and without bone lesions was not statistically significant. Our data suggest that serum TRAP activity may be a suitable, simple biochemical test to assess bone turnover in patients with multiple myeloma but that its clinical usefulness as a marker of bone resorption needs further evaluation.  相似文献   

4.
Tartrate-resistant acid phosphatase (TRAP) is expressed by osteoclasts, macrophages and dendritic cells. TRAP has been identified in a wide variety of tissues, however, its biological function is not fully understood. Serum TRAP is a marker of diseases involving excessive bone resorption including metastatic bone disease in breast cancer patients and can be used to monitor responses to treatment. Our aim in this study was to determine whether TRAP is expressed by human breast tumours. Four breast cancer cell lines were assayed for TRAP activity. MDA-MB-435, the most tumourigenic line, had an activity twofold higher than the other cell lines. Immunohistochemistry using a TRAP specific antibody confirmed that both cell lines and human breast tumours express TRAP. Expression was absent in benign tissues and abundant in more aggressive tumours. This work suggests that tumour derived TRAP contributes to the raised enzyme activity found in the serum of breast cancer patients.  相似文献   

5.
Tartrate resistant acid phosphatase (TRAP) activity of bone is a suitable biochemical marker for osteoclastic bone resorption. Qualitatively, the histochemical distribution of TRAP has been used to identify osteoclasts responsible for bone resorption; however, there have been few attempts to quantify TRAP localization. We describe a method for evaluating bone resorption by quantifying area percentages of positive TRAP localization using image analysis. Mouse tibiae were paraffin embedded following demineralization in disodium ethylenediamine tetraacetic acid. Longitudinal sections of tibia were cut from 15 levels in the left and the right limbs of six mice (180 sections total) and stained for TRAP distribution. Positive TRAP localization was quantified by pixel area count and reported as a percentage of the total tissue area specified. The 1.85 mm2 region of interest was placed at the midpoint of the epiphyseal growth plate containing the provisional calcification layer and the primary spongiosa, while excluding cortical bone of each mouse tibia. The percentage of TRAP localization ranged from 0.95 to 1.31% and was not significantly different from level to level or limb to limb in each mouse (p > 0.100). Within the same region of interest, an osteoclast count along the bone perimeter also was performed. We demonstrated a strong correlation (r2 = 0.903) between the conventional histomorphometric osteoclast index and positive TRAP localization, validating the latter as an alternative method to assess bone resorption. Quantitative analysis of TRAP is significant because it allows statistical comparisons between treatment groups, promotes precise pathological diagnoses and facilitates a reference data base that may aid the study of bone related diseases involving increased bone resorption.  相似文献   

6.
Sample SJ  Hao Z  Wilson AP  Muir P 《PloS one》2011,6(6):e20386

Background

Calcitonin gene related peptide (CGRP) is a neuropeptide that is abundant in the sensory neurons which innervate bone. The effects of CGRP on isolated bone cells have been widely studied, and CGRP is currently considered to be an osteoanabolic peptide that has effects on both osteoclasts and osteoblasts. However, relatively little is known about the physiological role of CGRP in-vivo in the skeletal responses to bone loading, particularly fatigue loading.

Methodology/Principal Findings

We used the rat ulna end-loading model to induce fatigue damage in the ulna unilaterally during cyclic loading. We postulated that CGRP would influence skeletal responses to cyclic fatigue loading. Rats were fatigue loaded and groups of rats were infused systemically with 0.9% saline, CGRP, or the receptor antagonist, CGRP8–37, for a 10 day study period. Ten days after fatigue loading, bone and serum CGRP concentrations, serum tartrate-resistant acid phosphatase 5b (TRAP5b) concentrations, and fatigue-induced skeletal responses were quantified. We found that cyclic fatigue loading led to increased CGRP concentrations in both loaded and contralateral ulnae. Administration of CGRP8–37 was associated with increased targeted remodeling in the fatigue-loaded ulna. Administration of CGRP or CGRP8–37 both increased reparative bone formation over the study period. Plasma concentration of TRAP5b was not significantly influenced by either CGRP or CGRP8–37 administration.

Conclusions

CGRP signaling modulates targeted remodeling of microdamage and reparative new bone formation after bone fatigue, and may be part of a neuronal signaling pathway which has regulatory effects on load-induced repair responses within the skeleton.  相似文献   

7.
Tartrate resistant acid phosphatase (TRAP) activity of bone is a suitable biochemical marker for osteoclastic bone resorption. Qualitatively, the histochemical distribution of TRAP has been used to identify osteoclasts responsible for bone resorption; however, there have been few attempts to quantify TRAP localization. We describe a method for evaluating bone resorption by quantifying area percentages of positive TRAP localization using image analysis. Mouse tibiae were paraffin embedded following demineralization in disodium ethylenediamine tetraacetic acid. Longitudinal sections of tibia were cut from 15 levels in the left and the right limbs of six mice (180 sections total) and stained for TRAP distribution. Positive TRAP localization was quantified by pixel area count and reported as a percentage of the total tissue area specified. The 1.85 mm2 region of interest was placed at the midpoint of the epiphyseal growth plate containing the provisional calcification layer and the primary spongiosa, while excluding cortical bone of each mouse tibia. The percentage of TRAP localization ranged from 0.95 to 1.31% and was not significantly different from level to level or limb to limb in each mouse (p>0.100). Within the same region of interest, an osteoclast count along the bone perimeter also was performed. We demonstrated a strong correlation (r2=0.903) between the conventional histomorphometric osteoclast index and positive TRAP localization, validating the latter as an alternative method to assess bone resorption. Quantitative analysis of TRAP is significant because it allows statistical comparisons between treatment groups, promotes precise pathological diagnoses and facilitates a reference data base that may aid the study of bone related diseases involving increased bone resorption.  相似文献   

8.
OST-6 (OsteoCare), a herbomineral formulation, was evaluated for its inhibitory effect on the progress of bone loss induced by ovariectomy in rats. Ovariectomized (Ovx) rats were administered with OST-6 at 250 and 500 mg/kg b.wt., orally daily for 90 days. On 91st day, ovariectomized rats showed reduced bone mineral content and increased serum alkaline phosphatase levels, excretion of urinary calcium and pyridinium cross-links levels. Histologically, bone sections revealed narrowed and disappearance of trabeculae and widened medullary spaces. The total numbers of Tartrate-resistant acid phosphatase (TRAP) positive cells were significantly increased both in-vivo and in-vitro methods. OST-6, at a dose of 500 mg/kg, significantly improved bone mineral contents, serum alkaline phosphatase levels, reduced the elevated urinary calcium and pyridinium cross-links excretion, number of TRAP positive cells and reversal of the above mentioned histological features. These results indicate the usefulness of OST-6 in the management of osteoporosis in a natural way through herbal resources.  相似文献   

9.
Hung TT  Chan J  Russell PJ  Power CA 《PloS one》2011,6(5):e19389

Background

The bisphosphonate, zoledronic acid (ZOL), can inhibit osteoclasts leading to decreased osteoclastogenesis and osteoclast activity in bone. Here, we used a mixed osteolytic/osteoblastic murine model of bone-metastatic prostate cancer, RM1(BM), to determine how inhibiting osteolysis with ZOL affects the ability of these cells to establish metastases in bone, the integrity of the tumour-bearing bones and the survival of the tumour-bearing mice.

Methods

The model involves intracardiac injection for arterial dissemination of the RM1(BM) cells in C57BL/6 mice. ZOL treatment was given via subcutaneous injections on days 0, 4, 8 and 12, at 20 and 100 µg/kg doses. Bone integrity was assessed by micro-computed tomography and histology with comparison to untreated mice. The osteoclast and osteoblast activity was determined by measuring serum tartrate-resistant acid phosphatase 5b (TRAP 5b) and osteocalcin, respectively. Mice were euthanased according to predetermined criteria and survival was assessed using Kaplan Meier plots.

Findings

Micro-CT and histological analysis showed that treatment of mice with ZOL from the day of intracardiac injection of RM1(BM) cells inhibited tumour-induced bone lysis, maintained bone volume and reduced the calcification of tumour-induced endochondral osteoid material. ZOL treatment also led to a decreased serum osteocalcin and TRAP 5b levels. Additionally, treated mice showed increased survival compared to vehicle treated controls. However, ZOL treatment did not inhibit the cells ability to metastasise to bone as the number of bone-metastases was similar in both treated and untreated mice.

Conclusions

ZOL treatment provided significant benefits for maintaining the integrity of tumour-bearing bones and increased the survival of tumour bearing mice, though it did not prevent establishment of bone-metastases in this model. From the mechanistic view, these observations confirm that tumour-induced bone lysis is not a requirement for establishment of these bone tumours.  相似文献   

10.
The time course of changes in plasma bone turnover markers following an acute bout of resistance training (RT) or plyometrics (PLY) has not been well characterized. This study is the first to compare the acute response of bone formation and resorption markers to a single bout of RT or PLY. Using a partially randomized, cross-over study design, 12 recreationally active men, aged 43 ± 5 yr, each completed four exercise trials: RT (Fed/Fasted) and PLY (Fed/Fasted). In addition to the RT and PLY trials, 5 of the original 12 participants also completed a fasted, no-exercise control trial to examine time-of-day variation. For each trial, blood was drawn immediately before exercise (PRE), immediately following exercise, and 15 min, 30 min, 1 h, 2 h, and 24 h following PRE for determination of plasma bone-specific alkaline phosphatase (BAP), osteocalcin (OC), tartrate-resistant acid phosphatase 5b (TRAP5b), COOH-terminal telopeptide of type I collagen (CTX), testosterone, parathyroid hormone, and cortisol. A one-factor repeated-measures ANOVA was performed for each trial to detect changes in bone markers during the 2 h following RT or PLY. TRAP5b transiently decreased during the 2 h following all exercise trials (main effect for time, P < 0.05), but returned to PRE concentrations 2 h postexercise. BAP, CTX, and OC remained unchanged, except for reductions in BAP and CTX following PLY-Fasted and PLY-Fed, respectively. During the control trial, BAP decreased, while TRAP5b, CTX, and OC remained unchanged. In general, plasma hormone concentrations decreased during the 2 h following PLY or RT, and cumulative decreases in TRAP5b during the 2 h following exercise were positively correlated with cumulative decreases in parathyroid hormone. The results of the present study suggest that the timing of the measurement of bone turnover markers relative to the last exercise bout is important for detection of exercise-associated changes in bone turnover markers, as the markers returned to preexercise values within 2 h of RT or PLY.  相似文献   

11.
Purpose: Tartrate-resistant acid phosphatase (TRAP) exists as two isoforms, 5a and 5b. TRAP 5a is elevated in adipose tissue of obese women, interacts with pre-adipocytes and is linked to insulin-sensitive hyperplastic obesity when overexpressed in mice. The aim of this study was to investigate the relation between serum TRAP 5a, adiposity indices and metabolic syndrome risk markers in lean and obese women, using a newly developed TRAP 5a-specific ELISA.

Materials and methods: A TRAP 5a sandwich ELISA was optimized using TRAP 5a-specific monoclonal antibodies and tested in sera of healthy males. TRAP 5a levels were quantitated in sera from healthy males and lean and obese women.

Results: Serum TRAP 5a protein levels were lower in obese women in comparison with lean. In obese, but not in lean women, serum TRAP 5a correlated positively to % fat mass, BMI, waist- and hip circumference, waist-to-hip ratio and PAI, while no correlations to serum leptin, HOMA, glucose, insulin, FFA, HDL, TG, APO-A1 and APO-B were observed.

Conclusions: TRAP 5a serum levels correlated positively to anthropometric obesity parameters but not to metabolic syndrome risk factors, indicating that serum TRAP 5a is associated with pathological adipose tissue expansion.  相似文献   


12.
Here, we aim at exploring the effect of CST5 on bone resorption and activation of osteoclasts in osteoporosis (OP) rats through the NF‐κB pathway. Microarray analysis was used to screen the OP‐related differentially expressed genes. Osteoporosis was induced in rats by intragastric retinoic acid administration. The serum levels of tartrate‐resistant acid phosphatase (TRAP), bone alkaline phosphatase (BALP) and osteocalcin (OC) and the expression of CD61 on the surface of osteoclasts were examined. The number of osteoclasts and the number and area of resorption pits were detected. Besides, the pathological changes and bone mineral density in bone tissues of rats were assessed. Also, the relationship between CST5 and the NF‐κB pathway was identified through determining the expression of CST5, RANKL, RANK, OPG, p65 and IKB. Poorly expressed CST5 was indicated to affect the OP. CST5 elevation and inhibition of the NF‐κB pathway decreased serum levels of TRAP, BALP and OC and expression of CD61 in vivo and in vitro. In OP rats, CST5 overexpression increased trabecular bones and bone mineral density of bone tissues, but decreased trabecular separation, fat within the bone marrow cavities and the number of osteoclasts through inhibiting the NF‐κB pathway. In vivo experiments showed that CST5 elevation inhibited growth in number and area of osteoclastic resorption pits and restrained osteoclastic bone absorption by inhibiting the NF‐κB pathway. In summary, overexpression of CST5 suppresses the activation and bone resorption of osteoclasts by inhibiting the activation of the NF‐κB pathway.  相似文献   

13.
Inorganic polyphosphate (poly(P)) has recently been found to play an important role in bone formation. In this study, we found that tartrate-resistant acid phosphatase (TRAP), which is abundantly expressed in osteoclasts, has polyphosphatase activity that degrades poly(P) and yields Pi as well as shorter poly(P) chains. Since the TRAP protein that coprecipitated with anti-TRAP monoclonal antibodies exhibited both polyphosphatase and the original phosphatase activity, poly(P) degradation activity is dependent on TRAP and not on other contaminating enzymes. The ferrous chelator α, α’-bipyridyl, which inhibits the TRAP-mediated production of reactive oxygen species (ROS), had no effect on such poly(P) degradation, suggesting that the degradation is not dependent on ROS. In addition, shorter chain length poly(P) molecules were better substrates than longer chains for TRAP, and poly(P) inhibited the phosphatase activity of TRAP depending on its chain length. The IC50 of poly(P) against the original phosphatase activity of TRAP was 9.8 µM with an average chain length more than 300 phosphate residues, whereas the IC50 of poly(P) with a shorter average chain length of 15 phosphate residues was 8.3 mM. Finally, the pit formation activity of cultured rat osteoclasts differentiated by RANKL and M-CSF were markedly inhibited by poly(P), while no obvious decrease in cell number or differentiation efficiency was observed for poly(P). In particular, the inhibition of pit formation by long chain poly(P) with 300 phosphate residues was stronger than that of shorter chain poly(P). Thus, poly(P) may play an important regulatory role in osteoclastic bone resorption by inhibiting TRAP activity, which is dependent on its chain length.  相似文献   

14.
The incidence of osteoporotic fractures increases as our population ages. Until now, the exact biochemical processes that occur during the healing of metaphyseal fractures remain unclear. Diagnostic instruments that allow a dynamic insight into the fracture healing process are as yet unavailable. In the present matched pair analysis, we study the time course of the osteoanabolic markers bone specific alkaline phosphatase (BAP) and transforming growth factor β1 (TGFβ1), as well as the osteocatabolic markers crosslinked C-telopeptide of type-I-collagen (β-CTX) and serum band 5 tartrate-resistant acid phosphatase (TRAP5b), during the healing of fractures that have a low level of bone mineral density (BMD) compared with fractures that have a normal BMD. Between March 2007 and February 2009, 30 patients aged older than 50 years who suffered a metaphyseal fracture were included in our study. BMDs were verified by dual energy Xray absorptiometry (DXEA) scans. The levels of BTMs were examined over an 8-week period. Osteoanabolic BAP levels in those with low levels of BMD were significantly different from the BAP levels in those with normal BMD. BAP levels in the former group increased constantly, whereas the latter group showed an initial strong decrease in BAP followed by slowly rising values. Osteocatabolic β-CTX increased in the bone of the normal BMD group constantly, whereas these levels decreased significantly in the bone of the group with low BMD from the first week. TRAP5b was significantly reduced in the low level BMD group. With this work, we conduct first insights into the molecular biology of the fracture healing process in patients with low levels of BMD that explains the mechanism of its fracture healing. The results may be one reason for the reduced healing qualities in bones with low BMD.  相似文献   

15.

Introduction

The aim of this study was to determine the factors, including markers of bone resorption and bone formation, which determine catabolic and anabolic periarticular bone changes in patients with rheumatoid arthritis (RA).

Methods

Forty RA patients received high-resolution peripheral quantitative computed tomography (HR-pQCT) analysis of the metacarpophalangeal joints II and III of the dominantly affected hand at two sequential time points (baseline, one year follow-up). Erosion counts and scores as well as osteophyte counts and scores were recorded. Simultaneously, serum markers of bone resorption (C-terminal telopeptide of type I collagen (CTX I), tartrate-resistant acid phosphatase 5b (TRAP5b)), bone formation (bone alkaline phosphatase (BAP), osteocalcin (OC)) and calcium homeostasis (parathyroid hormone (PTH), 25-hydroxyvitamin D3 (Vit D)) were assessed. Bone biomarkers were correlated to imaging data by partial correlation adjusting for various demographic and disease-specific parameters. Additionally, imaging data were analyzed by mixed linear model regression.

Results

Partial correlation analysis showed that TRAP5b levels correlate significantly with bone erosions, whereas BAP levels correlate with osteophytes at both time points. In the mixed linear model with erosions as the dependent variable, disease duration (P <0.001) was the key determinant for these catabolic bone changes. In contrast, BAP (P = 0.001) as well as age (P = 0.018), but not disease duration (P = 0.762), were the main determinants for the anabolic changes (osteophytes) of the periarticular bone in patients with RA.

Conclusions

This study shows that structural bone changes assessed with HR-pQCT are accompanied by alterations in systemic markers of bone resorption and bone formation. Besides, it can be shown that bone erosions in RA patients depend on disease duration, whereas osteophytes are associated with age as well as serum level of BAP. Therefore, these data not only suggest that different variables are involved in formation of bone erosions and osteophytes in RA patients, but also that periarticular bone changes correlate with alterations in systemic markers of bone metabolism, pointing out BAP as an important parameter.  相似文献   

16.
RAW 264.7 cells are one of the most recommended cell lines for investigating the activity and differentiation of osteoclasts. These cells differentiate into osteoclasts in the presence of two critical components: receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony stimulating factor (MCSF). Melatonin (MEL) hormone has recently become one of the small molecules used in the field of bone regeneration and bone disease treatment, as it has the ability to inhibit the differentiation of osteoclasts directly by suppression of the NF-κB signaling pathway. The main aim of the current study is to determine sufficient RANKL/MCSF concentrations for differentiation of the cells to osteoclasts and to describe the repressive effect of MEL on the osteoclastogenesis of these cells. In this regard, it was found that 10 ng/mL of RANKL- and MCSF-containing medium is suitable for inducing osteoclastogenesis of the cells. In addition, melatonin at doses in the range of 100–1000 µM does not have a cytotoxic effect. Subsequently, results of tartrate resistant acid phosphatase (TRAP) activity, TRAP staining, and relative expressions of cathepsin K, nuclear factor of activated T cells one (NFATC1), and TRAP genes showed a suppressive effect of MEL —especially 800 µM— on RANKL-induced osteoclastogenesis of these cells.  相似文献   

17.
Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5, 12, and 18 months. At each time point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5 months). Cortical bone increased through month 5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5–10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals, but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis-prevention strategy.  相似文献   

18.
The adipokine tartrate resistant acid phosphatase (TRAP) 5a isoform exerts a growth factor-effect on pre-adipocytes. This study aimed to identify potential TRAP 5a interacting proteins in pre-adipocytes using pull down assays in combination with mass spectrometry. Nidogen-2, a protein shown to be expressed intracellularly and for secretion by pre-adipocytes, was shown to interact, through its globular G3 domain, with TRAP 5a in vitro. In vivo, TRAP 5a interacted with nidogen-2 in cultured 3T3-L1 mouse pre-adipocytes, as well as with transforming growth factor-β (TGF-β) interacting protein (TRIP-1), which is a protein that has previously been suggested to interact with TRAP in bone. In addition, TRAP 5a and nidogen-2 co-localized in adipose tissue cells in situ. These results indicate that TRAP 5a interacts with nidogen-2 and TRIP-1 in pre-adipocytic cells.  相似文献   

19.
Histochemical demonstration of tartrate-resistant acid phosphatase (TRAP) is used for the specific identification of osteoclasts. The enzyme, which we have shown to be critical for normal bone development in mice, is also characteristic of monohistiocytes, including alveolar macrophages, and is associated with diverse pathological conditions such as Gaucher's disease and hairy cell leukemia. TRAP activity is enhanced in serum when bone resorption is increased, and the activity is used routinely to monitor treatment responses in Gaucher's disease. We have lately shown widespread expression of the enzyme in murine tissues with particular reference to the skin, thymus, gut epithelia, and isolated dendritic cells, suggesting a possible role in immunity. To further clarify the significance of TRAP in human physiology, we have examined its distribution in non-skeletal human tissues and in CD34+ -derived human dendritic cells. TRAP mRNA determined by Northern blotting analysis was expressed abundantly in spleen, liver, colon, lung, small intestine, kidney, stomach, testis, placenta, lymph node, thymus, peripheral blood leukocyte, bone marrow, and fetal liver. Expression of TRAP protein was investigated by immunohistochemistry, with which the enzyme was identified in multiple tissues. Histochemical staining detected enzymatically active protein in spleen, lung, skin, colon, stomach, and ileum. Active TRAP was identified in CD34+ -derived immature dendritic cells and co-localized to intracellular CD63 positive organelles. When these cells were matured by induction with LPS, the TRAP activity increased fivefold and remained within the cell during the phase associated with CD63 surface expression. Our findings demonstrate widespread expression of TRAP in human tissues. Its abundant expression in epithelia and dendritic cells suggests a potential role in antigen processing and in immune responses.  相似文献   

20.
Enzymatic activity of type 5 tartrate-resistant acid phosphatase (TRAP) has been regarded as one of the reliable markers for osteoclasts and their precursors. The presence of TRAP activity in osteocytes near the bone resorbing surface has also been pointed out in some reports. However, the significance of TRAP reactions in osteocytes remains controversial and, in fact, there is no agreement as to whether the histochemical enzyme reactions in osteocytes represent the TRAP enzyme generated by the respective osteocytes or is a mere diffusion artifact of the reaction products derived from the nearby osteoclasts. Current histochemical, immunohistochemical, and in situ hybridization studies of rat and canine bones confirmed TRAP enzyme activity, TRAP immunoreactivity, and the expression of Trap mRNA signals in osteocytes located close to the bone-resorbing surface. TRAP/Trap- positive osteocytes thus identified were confined to the areas no further than 200 microm from the bone-resorbing surface and showed apparent upregulation of TRAP/Trap expression toward the active osteoclasts. Spatial and temporal patterns of TRAP/Trap expression in the osteocytes should serve as a valuable parameter for further analyses of biological interactions between the osteocytes and the osteoclasts associated with bone remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号