首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of hammerhead ribozyme, with cleavage activity enhanced by oligonucleotides, was constructed. Stem II of the ribozyme was substituted with a non complementary loop (loop II). The modified ribozyme exhibited negligible cleavage of a target RNA; however, it was converted to an active molecule in the presence of oligonucleotides which were complementary to loop II. The oligonucleotide compensated for the disabled stem II by binding with the ribozyme. The induction of the cleavage activity was sequence-specific and the oligonucleotides containing a purine base as the 3'-dangling end were able to induce the cleavage activity of the ribozyme most efficiently. A photo-crosslinking experiment proved that a pseudo-half-knot structure was formed in the active molecule. The cleavage of two kinds of substrate RNAs with different sequences was controlled by the corresponding ribozymes activated by specific oligonucleotides.  相似文献   

2.
M J Fedor 《Biochemistry》1999,38(34):11040-11050
The hairpin ribozyme catalyzes a reversible RNA cleavage reaction that participates in processing intermediates of viral satellite RNA replication in plants. A minimal hairpin ribozyme consists of two helix-loop-helix segments. These segments associate noncoaxially in the active folded structure in a way that brings catalytically important loop nucleotides into close proximity. The hairpin ribozyme in the satellite RNA of Tobacco Ringspot Virus assembles in the context of a four-way helical junction. Recent physical characterization of hairpin ribozyme structures using fluorescence resonance energy transfer demonstrated enhanced stability of the folded structure in the context of a four-way helical junction compared to minimal hairpin ribozyme variants. Analysis of the functional consequences of this modification of the helical junction has revealed two changes in the hairpin ribozyme kinetic mechanism. First, ribozymes with a four-way helical junction bind 3' cleavage products with much higher affinity than minimal hairpin ribozymes, evidence that tertiary interactions within the folded structure contribute to product binding energy. Second, the balance between ligation and cleavage shifts in favor of ligation. The enhanced ligation activity of hairpin ribozymes that contain a four-way helical junction supports the notion that tertiary structure stability is a major determinant of the hairpin ribozyme proficiency as a ligase and illustrates the link between RNA structure and biological function.  相似文献   

3.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

4.
5.
We have constructed a model structure that we believe represents the strongest possible physically and chemically reasonable representation of a hypothesized catalytically active hammerhead ribozyme structure in which a single divalent metal ion bridges the A9 and scissile phosphate groups. It has been proposed that such a structure arises from a conformational change in which the so-called ground-state structure (as observed by X-ray crystallography) rearranges in such a way that the pro-R oxygen atoms of both the A9 and scissile phosphate groups are directly coordinated by a single divalent metal ion in the transition-state of the hammerhead ribozyme cleavage reaction. We show that even the small subset of possible model structures that are consistent with these requirements, and that are stereochemically and sterically reasonable, are contradicted by experimental evidence. We also demonstrate that even a minimal subset of assumptions, i.e. that stems I and II are helical and that the two phosphate groups are coordinated by a divalent metal ion in the standard octahedral geometry, are sufficient to lead to this contradiction. We therefore conclude that such a mechanism of hammerhead ribozyme catalysis is untenable, at least in its present formulation.  相似文献   

6.
The 110 nt hammerhead ribozyme in the satellite RNA of cereal yellow dwarf virus-RPV (satRPV RNA) folds into an alternative conformation that inhibits self-cleavage. This alternative structure comprises a pseudoknot with base-pairing between loop (L1) and a single-stranded bulge (L2a), which are located in hammerhead stems I and II, respectively. Mutations that disrupt this base-pairing, or otherwise cause the ribozyme to more closely resemble a canonical hammerhead, greatly increase self-cleavage. In a more natural multimeric sequence context containing the full-length satRPV RNA and two copies of the hammerhead, wild-type RNA cleaves much more efficiently than in the 110 nt context. Mutations in the upstream hammerhead, including a knock-out in the catalytic core, affect cleavage at the downstream cleavage site, indicating that multimers of satRPV RNA cleave via a double hammerhead. The double hammerhead includes base-pairing between two copies of the L1 sequence which extends stem I. Disruption of L1-L1 base-pairing slows cleavage of the multimer. L1-L2a base-pairing is required for efficient replication of satRPV RNA in oat protoplasts. Mutations that affect self-cleavage of the multimer do not correlate with replication efficiency, indicating that the ability to self-cleave is not a primary determinant of replication. We present a replication model in which multimeric satRPV RNA folds into alternative conformations that cannot form in the monomer. One potential metastable intermediate conformation involves L1-L2a base-pairing that may facilitate formation of the double hammerhead. However, we conclude that L1-L2a also performs some other essential function in the satRPV RNA replication cycle, because the L1-L2a base-pairing is more important than efficient self-cleavage for replication.  相似文献   

7.
A hairpin loop and an oligonucleotide bound to the loop form one-half of the pseudoknot structure. We have designed an allosteric hammerhead ribozyme, which is activated by the introduction of this motif by using a short complementary oligonucleotide as a cofactor. Stem II of the hammerhead ribozyme was substituted with a non-self-complementary loop sequence (loop II) to abolish the cleavage activity. The new ribozyme had almost no cleavage activity of the target RNA. However, it exhibited the cleavage activity in the presence of a cofactor oligoribonucleotide, which is complementary to loop II of the ribozyme. The activity is assumed to be derived from the formation of a pseudo-stem structure between the cofactor oligonucleotide and loop II. The structure including the loop may be similar to the pseudo-half-knot structure. The activation efficiencies of the cofactor oligonucleotides were decreased as the lengths of the oligonucleotides increased, and the ribozyme with a longer loop II was more active than that with a short loop II. Oligoribonucleotides with 3'-dangling purine bases served as efficient cofactors of the ribozyme, and a 2'-O-methyloligonucleotide enhanced the cleavage activity of the ribozyme most efficiently, by as much as about 750-fold as compared with that in the absence of the oligonucleotide. Cofactor oligonucleotides with a cytidine base at the 3'-end also activated a ribozyme with the G10.1.G11.1 mutation, which eliminates the cleavage activity in the wild-type. The binding sites of the oligonucleotide were identified by photo-crosslinking experiments and were found to be the predicted sites in the loop. This is the first report of a design aimed at positively controlling the activity of ribozymes by employing a structural motif. This method can be applied to control the activities of other functional RNAs with hairpin loops.  相似文献   

8.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

9.
The hammerhead ribozyme, a small catalytic RNA molecule, cleaves, in the presence of magnesium ions, a specific phosphodiester bond within its own backbone, leading to 23-cyclic phosphate and 5-OH extremities. In order to study the dynamical flexibility of the hammerhead RNA, we performed molecular dynamics simulations of the solvated crystal structure of an active hammerhead ribozyme, obtained after flash-freezing crystals soaked with magnesium. Because of a careful equilibration protocol and the use of the Ewald summation in calculating the electrostatic interactions, the RNA structure remained close to the crystal structure, as attested by a root-mean-square deviation below 2.5 A after 750 ps of simulation. All Watson-Crick base pairs were intact at the end of the simulations. The tertiary interactions, such as the sheared G.A pairs and the U-turn, important for the stabilisation of the three-dimensional RNA fold, were also retained. The results demonstrate that molecular dynamics simulations can be successfully used to investigate the dynamical behaviour of a ribozyme, thus, opening a road to study the role of transient structural changes involved in ribozyme catalysis.  相似文献   

10.
Four RNA motifs are known that catalyse site-specific cleavage in the presence of Mg2+ ions, all discovered in natural RNAs. In a single in vitro selection experiment we have isolated representatives of five novel classes of Mg(2+)-dependent ribozymes. Small versions of three of these showed that a very simple internal loop type of secondary structure is responsible for the activity. One of these was synthesized in a bimolecular form, and compared directly with the hammerhead ribozyme; for the new ribozyme, the cleavage step of the reaction is much faster than the spontaneous rate of phosphodiester bond cleavage, yet substantially slower than that for the hammerhead. The results suggest that many more Mg(2+)-dependent self-cleaving RNA sequences can be found.  相似文献   

11.
In the presence of magnesium ions, cleavage by the hammerhead ribozyme RNA at a specific residue leads to 2'3'-cyclic phosphate and 5'-OH extremities. In the cleavage reaction an activated ribose 2'-hydroxyl group attacks its attached 3'-phosphate. Molecular dynamics simulations of the crystal structure of the hammerhead ribozyme, obtained after flash-freezing of crystals under conditions where the ribozyme is active, provide evidence that a mu-bridging OH-ion is located between two Mg2+ions close to the cleavable phosphate. Constrained simulations show further that a flip from the C3'- endo to the C2'- endo conformation of the ribose at the cleavable phosphate brings the 2'-hydroxyl in proximity to both the attacked phosphorous atom and the mu-bridging OH-ion. Thus, the simulations lead to a detailed new insight into the mechanism of hammerhead ribozyme cleavage where a mu-hydroxo bridged magnesium cluster, located on the deep groove side, provides an OH-ion that is able to activate the 2'-hydroxyl nucleophile after a minor and localized conformational change in the RNA.  相似文献   

12.
Bondensgaard K  Mollova ET  Pardi A 《Biochemistry》2002,41(39):11532-11542
The global structure of the hammerhead ribozyme was determined in the absence of Mg(2+) by solution NMR experiments. The hammerhead ribozyme motif forms a branched structure consisting of three helical stems connected to a catalytic core. The (1)H-(15)N and (1)H-(13)C residual dipolar couplings were measured in a set of differentially (15)N/(13)C-labeled ribozymes complexed with an unlabeled noncleavable substrate. The residual dipolar couplings provide orientation information on both the local and the global structure of the molecule. Analysis of the residual dipolar couplings demonstrated that the local structure of the three helical stems in solution is well modeled by an A-form conformation. However, the global structure of the hammerhead in solution in the absence of Mg(2+) is not consistent with the Y-shaped conformation observed in crystal structures of the hammerhead. The residual dipolar couplings for the helical stems were combined with standard NOE and J coupling constant NMR data from the catalytic core. The NOE data show formation of sheared G-A base pairs in domain 2. These NMR data were used to determine the global orientation of the three helical stems in the hammerhead. The hammerhead forms a rather extended structure under these conditions with a large angle between stems I and II ( approximately 153 degrees ), a smaller angle between stems II and III ( approximately 100 degrees ), and the smallest angle between stems I and III ( approximately 77 degrees ). The residual dipolar coupling data also contain information on the dynamics of the molecule and were used here to provide qualitative information on the flexibility of the helical domains in the hammerhead ribozyme-substrate complex.  相似文献   

13.
Weinberg MS  Rossi JJ 《FEBS letters》2005,579(7):1619-1624
trans-Cleaving hammerhead ribozyme variants were generated with mimicked non-conserved internal loop motifs derived from five structurally diverse natural cis-cleaving ribozymes. Most modified trans-cleaving variants showed enhanced single-turnover cleavage rates relative to minimal counterparts that lack tertiary interactions between internal loop motifs I and II, and relative to controls with sequence changes in loop I. The trans-cleaving ribozyme derived from the positive strand of peach latent mosaic viroid had the highest observed cleavage rate, suggesting a structurally optimized motif that facilitates rapid formation of the ribozyme catalytic center in a trans-reaction.  相似文献   

14.
We have investigated the chemical basis for a previously observed 7.8 A conformational change in the hammerhead ribozyme that positions the substrate for in-line attack. We have found that the conformational change can only be observed at or above pH 8.5 (in the presence of Co(2+)) and requires the presence of an ionizable 2'-OH at the cleavage site, and note that this observed apparent pK(a) of 8.5 for the conformational change is within experimental error (+/-0.5) of the previously reported apparent kinetic pK(a) of 8.5 for the hammerhead ribozyme in the presence of Co(2+). We have solved two crystal structures of hammerhead ribozymes having 2'-OCH(3) or 2'-F substitutions at the cleavage site and have found that these will not undergo a conformational change equivalent to that observed for the hammerhead ribozyme having an unmodified attacking nucleophile under otherwise identical conditions. We have also characterized the kinetics of cleavage in the crystal. In addition to verifying that the particular sequence of RNA that we crystallized cleaves faster in the crystal than in solution, we also find that the extent of cleavage in the crystal is complete, unlike in solution where this and most other hammerhead ribozyme substrates are cleaved only to about 70 % completion. The initial cleavage rate in the crystal obeys the expected log-linear relation between cleavage-rate and pH with a slope of 0.7, as has been observed for other hammerhead ribozyme sequences in solution, indicating that in both the crystal and in solution the pH-dependent step is rate-limiting. However, the cleavage rate in the crystal is biphasic, with the most dramatic distinction between initial (slower) and final (faster) phases appearing at pH 6.0. The initial phase corresponds to the pH-dependent cleavage rate observed in solution, but the second, faster phase is roughly pH-independent and closely parallels the cleavage rate observed at pH 8 (0.4/minute). This result is particularly remarkable because it entails that the rapidly cleaving phase at pH 6 is comparable to the cleavage rate for the fastest cleaving hammerhead ribozymes at pH 6. Based upon these observations, we conclude that the pH-dependent conformational change is the rate-determining step under standard conditions for the hammerhead ribozyme self-cleavage reaction, and that an ionizable 2'-proton at cleavage site is required for this conformational change. We further hypothesize that deprotonation of the cleavage-site 2'-oxygen drives this conformational change.  相似文献   

15.
Elucidation of the catalytic mechanism and structure—function relationship studies of the hammerhead ribozyme continue to be an area of intensive research. A combination of diverse approaches, such as X ray crystallography, spectral studies, chemical modifications, sequence variations and kinetic analyses, have provided valuable insight into the cleavage mechanism of this ribozyme. The hammerhead ribozyme crystal structures have provided valuable insight into conformational deformations needed to attain the catalytically active structure. Similarly, determination of ribozyme solution structure by spectroscopic analyses and the effect of divalent metal ions on RNA folding has further aided in the construction of a model for hammerhmead catalysis.  相似文献   

16.
When designed to cleave a target RNA in trans, the hammerhead ribozyme contains two antisense flanks which form helix I and helix III by pairing with the complementary target RNA. The sequences forming helix II are contained on the ribozyme strand and represent a major structural component of the hammerhead structure. In the case of an inhibitory 429 nucleotides long trans-ribozyme (2as-Rz12) which was directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1), helix II was not pre-formed in the single-stranded molecule. Thus, major structural changes are necessary before cleavage can occur. To study whether pre-formation of helix II in the non-paired 2as-Rz12 RNA could influence the observed cleavage rate in vitro and its inhibitory activity on HIV-1 replication, we extended the 4 base pair helix II of 2as-Rz12 to 6, 10, 21, and 22 base pairs respectively. Limited RNase cleavage reactions performed in vitro at 37 degrees C and at physiological ion strength indicated that a helix II of the hammerhead domain was pre-formed when its length was at least six base pairs. This modification neither affected the association rate with target RNA nor the cleavage rate in vitro. In contrast to this, extension of helix II led to a significantly decreased inhibition of HIV-1 replication in human cells. Together with the finding of others that shortening of helix II to less than two base pairs reduces the catalytic activity in vitro, this observation indicates that the length of helix II in the naturally occurring RNAs with a hammerhead domain is already close or identical to the optimal length for catalytic activity in vitro and in vivo.  相似文献   

17.
Most researchers who intend to suppress a particular gene are interested primarily in the application of ribozyme technology rather than its mechanistic details. This article provides some background information and describes a straightforward strategy to generate and test a special design of a ribozyme: the asymmetric hammerhead ribozyme. This version of a hammerhead ribozyme carries at its 5' end the catalytic domain and at its 3' end a relatively long antisense flank that is complementary to the target RNA. Asymmetric hammerhead ribozymes can be constructed via polymerase chain reaction amplification, and rules are provided on how to select the DNA oligonucleotides required for this reaction. In addition to details on construction, we describe how to test asymmetric hammerhead ribozymes for association with the target RNA in vitro, so that RNA constructs can be selected and optimized for fast hybridization with their target RNA. This test can allow one to minimize association problems caused by the secondary structure of the target RNA. Additionally, we describe the in vitro cleavage assay and the determination of the cleavage rate constant. Testing for efficient cleavage is also a prerequisite for reliable and successful application of the technology. A carefully selected RNA will be more promising when eventually used for target suppression in living cells.  相似文献   

18.
Since their discovery in the 1980s, it has gradually become apparent that there are several functional classes of naturally occurring ribozymes. These include ribozymes that mediate RNA splicing (the Group I and Group II introns, and possibly the RNA components of the spliceosome), RNA processing ribozymes (RNase P, which cleaves precursor tRNAs and other structural RNA precursors), the peptidyl transferase center of the ribosome, and small, self-cleaving genomic ribozymes (including the hammerhead, hairpin, HDV and VS ribozymes). The most recently discovered functional class of ribozymes include those that are embedded in the untranslated regions of mature mRNAs that regulate the gene's translational expression. These include the prokaryotic glmS ribozyme, a bacterial riboswitch, and a variant of the hammerhead ribozyme, which has been found embedded in mammalian mRNAs. With the discovery of a mammalian riboswitch ribozyme, the question of how an embedded hammerhead ribozyme's switching mechanism works becomes a compelling question. Recent structural results suggest several possibilities.  相似文献   

19.
The hammerhead ribozyme is a more efficient ribonuclease than an RNA ligase. Under typical reaction conditions, the rate of RNA chain cleavage is approximately 100-fold faster than the rate of the reverse ligation reaction such that virtually all of the hammerhead is in its cleaved form at equilibrium. Here we show that the introduction of a crosslink away from the catalytic core of the hammerhead has little effect on the cleavage rate but dramatically increases the ligation rate, thereby making the hammerhead an efficient RNA ligase. This experiment emphasizes the role of molecular flexibility in defining the properties of a macromolecular catalyst and suggests why other small ribozymes are more efficient ligases than ribonucleases.  相似文献   

20.
Blount KF  Uhlenbeck OC 《Biochemistry》2002,41(21):6834-6841
A method was developed that permits covalent cross-links of different linker lengths to be introduced into RNA at defined positions. The previous observation that a cross-link between stems I and II of the hammerhead ribozyme was confirmed and further explored. By examining the catalytic consequences of varying the position and length of this cross-link, we conclude that the previously proposed conformational dampening model cannot sufficiently explain the increase in ligation rate induced by the cross-link. Rather, the cross-link constrains the cleaved hammerhead into a structure that more closely resembles the transition state, thereby increasing the reverse ligation rate relative to a non-cross-linked control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号