首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang JK  Wang L  Zheng L  Wan F  Ahmed M  Lenardo MJ  Wu H 《Molecular cell》2005,20(6):939-949
The death-inducing signaling complex (DISC) comprising Fas, Fas-associated death domain (FADD), and caspase-8/10 is assembled via homotypic associations between death domains (DDs) of Fas and FADD and between death effector domains (DEDs) of FADD and caspase-8/10. Caspase-8/10 and FLICE/caspase-8 inhibitory proteins (FLIPs) that inhibit caspase activation at the DISC level contain tandem DEDs. Here, we report the crystal structure of a viral FLIP, MC159, at 1.2 Angstroms resolution. It reveals a noncanonical fold of DED1, a dumbbell-shaped structure with rigidly associated DEDs and a different mode of interaction in the DD superfamily. Whereas the conserved hydrophobic patch of DED1 interacts with DED2, the corresponding region of DED2 mediates caspase-8 recruitment and contributes to DISC assembly. In contrast, MC159 cooperatively assembles with Fas and FADD via an extensive surface that encompasses the conserved charge triad. This interaction apparently competes with FADD self-association and disrupts higher-order oligomerization required for caspase activation in the DISC.  相似文献   

2.
Cellular FLICE-inhibitory protein (c-FLIP) proteins are known as potent inhibitors of death receptor-mediated apoptosis by interfering with caspase-8 activation at the death-inducing signaling complex (DISC). Among the three human isoforms, c-FLIP(long), c-FLIP(short) and c-FLIP(R), the latter isoform is poorly characterized. We report here the characterization of murine c-FLIP(R) and show that it is the only short c-FLIP isoform expressed in mice. By generating several mutants, we demonstrate that both death effector domains (DEDs) are required for DISC binding and the antiapoptotic function of c-FLIP(R). Surprisingly, the C-terminal tail is important for both protein stability and DISC recruitment. Three-dimensional modeling of c-FLIP(R) revealed a substantial similarity of the overall structures and potential interaction motifs with the viral FLIP MC159. We found, however, that c-FLIP(R) uses different structural motifs for its DISC recruitment. Whereas MC159 interferes with interaction and self-oligomerization of the DISC component FADD by its extensive hydrophilic surface, a narrow hydrophobic patch of c-FLIP(R) on the surface of DED2 is crucial for DISC association. Thus, despite the presence of similar tandem DEDs, viral and cellular FLIPs inhibit apoptosis by remarkably divergent mechanisms.  相似文献   

3.
Death receptor signaling is initiated by the assembly of the death-inducing signaling complex, which culminates in the activation of the initiator caspase, either caspase-8 or caspase-10. A family of viral and cellular proteins, known as FLIP, plays an essential role in the regulation of death receptor signaling. Viral FLIP (v-FLIP) and short cellular FLIP (c-FLIPS) inhibit apoptosis by interfering with death receptor signaling. The structure and mechanisms of v-FLIP and c-FLIPS remain largely unknown. Here we report a high resolution crystal structure of MC159, a v-FLIP derived from the molluscum contagiosum virus, which is a member of the human poxvirus family. Unexpectedly, the two tandem death effector domains (DEDs) of MC159 rigidly associate with each other through a hydrophobic interface. Structure-based sequence analysis suggests that this interface is conserved in the tandem DEDs from other v-FLIP, c-FLIPS, and caspase-8 and -10. Strikingly, the overall packing arrangement between the two DEDs of MC159 resembles that between the caspase recruitment domains of Apaf-1 and caspase-9. In addition, each DED of MC159 contains a highly conserved binding motif on the surface, to which loss-of-function mutations in MC159 map. These observations, in conjunction with published evidence, reveal significant insights into the function of v-FLIP and suggest a mechanism by which v-FLIP and c-FLIPS inhibit death receptor signaling.  相似文献   

4.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

5.
Besides inducing apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activates NF-κB. The apoptosis signaling pathway of TRAIL is well characterized involving TRAIL receptors, Fas-associated protein with death domain (FADD) and caspase-8. In contrast, the molecular mechanism of TRAIL signaling to NF-κB remains controversial. Here, we characterized the receptor–proximal mediators of NF-κB activation by TRAIL. Deletion of the DD of TRAIL receptors 1 and 2 revealed that it is essential in NF-κB signaling. Because FADD interacts with the TRAIL receptor DD, FADD was tested. RNAi-mediated knockdown of FADD or FADD deficiency in JURKAT T-cell leukemia cells decreased or disabled NF-κB signaling by TRAIL. In contrast, TRAIL-induced activation of NF-κB was maintained upon loss of receptor interacting protein 1 (RIP1) or knockdown of FLICE-like inhibitory protein (FLIP). Exogenous expression of FADD rescued TRAIL-induced NF-κB signaling. Loss-of-function mutations of FADD within the RHDLL motif of the death effector domain, which is required for TRAIL-induced apoptosis, abrogated FADD''s ability to recruit caspase-8 and mediate NF-κB activation. Accordingly, deficiency of caspase-8 inhibited TRAIL-induced activation of NF-κB, which was rescued by wild-type caspase-8, but not by a catalytically inactive caspase-8 mutant. These data establish the mechanism of TRAIL-induced NF-κB activation involving the TRAIL receptor DD, FADD and caspase-8, but not RIP1 or FLIP. Our results show that signaling of TRAIL-induced apoptosis and NF-κB bifurcates downstream of caspase-8.  相似文献   

6.
The structure of FADD and its mode of interaction with procaspase-8   总被引:6,自引:0,他引:6  
The structure of FADD has been solved in solution, revealing that the death effector domain (DED) and death domain (DD) are aligned with one another in an orthogonal, tail-to-tail fashion. Mutagenesis of FADD and functional reconstitution with its binding partners define the interaction with the intracellular domain of CD95 and the prodomain of procaspase-8 and reveal a self-association surface necessary to form a productive complex with an activated "death receptor." The identification of a procaspase-specific binding surface on the FADD DED suggests a preferential interaction with one, but not both, of the DEDs of procaspase-8 in a perpendicular arrangement. FADD self-association is mediated by a "hydrophobic patch" in the vicinity of F25 in the DED. The structure of FADD and its functional characterization, therefore, illustrate the architecture of key components in the death-inducing signaling complex.  相似文献   

7.
Fas- and tumor necrosis factor receptor 1 (TNFR1)-induced apoptosis is mediated by the interaction of FADD with caspase-8. Here, we report that the bovine herpesvirus 4 (BHV4) BORFE2 gene encodes a protein that inhibits Fas- and TNFR1-induced apoptosis and contains death effector domains (DEDs). Using the yeast two-hybrid system, we found that the BORFE2 protein interacts with the prodomain of caspase-8. Furthermore, we show that BHV4 BORFE2 is a member of a family of DED-containing proteins that includes other gamma-2 herpesviruses, such as Kaposi's sarcoma-associated herpesvirus and herpesvirus saimiri.  相似文献   

8.
FADD is known to function as a common signaling conduit in Fas- and tumor necrosis factor (TNF)-mediated apoptosis. The convergent death signals from the Fas receptor and TNF receptor 1 are transferred to FADD by death domain interactions triggering the same cellular event, caspase-8 activation. In this work, we investigated whether the same binding surface of FADD is used for both signaling pathways by using FADD death domain mutants. Mutations in helices alpha2 and alpha3 of the FADD death domain, the interacting surface with the Fas death domain, affected TNF-mediated apoptosis to various extents. This indicated that TNF-mediated apoptosis uses the same binding surface of the FADD death domain as Fas-mediated apoptosis. The binding specificity is not the same, however. Some mutations affected the binding affinity of the Fas death domain for the FADD death domain, but did not influence TNF-mediated apoptosis and vice versa. Interestingly, all mutants tested that affected TNF-mediated apoptosis have structural perturbations, implying that the structural integrity, involving helices alpha2 and alpha3 in particular, is critical in TNF-mediated apoptosis. Our results suggest that different signaling molecules use a similar structural interaction to trigger the same cellular event, such as caspase-8 recruitment, which could be typical in convergent signal transduction.  相似文献   

9.
FAF1 has been introduced as a Fas-binding protein. However, the function of FAF1 in apoptotic execution is not established. Based on the fact that FAF1 is a Fas-binding protein, we asked if FAF1 interacted with other members of the Fas-death-inducing signaling complex (Fas-DISC) such as Fas-associated death domain protein (FADD) and caspase-8. FAF1 could interact with caspase-8 and FADD in vivo as well as in vitro. The death effector domains (DEDs) of caspase-8 and FADD interacted with the amino acid 181-381 region of FAF1, previously known to have apoptotic potential. Considering that FAF1 directly binds to Fas and caspase-8, FAF1 shows similar protein-interacting characteristics to that of FADD. In the coimmunoprecipitation with an anti-Fas antibody (APO-1) in Jurkat cells, endogenous FAF1 was associated with the precipitates in which caspase-8 was present. By confocal microscopic analysis, both Fas and FAF1 were detected in the cytoplasmic membrane before Fas activation, and in the cytoplasm after Fas activation. FADD and caspase-8 colocalized with Fas in Jurkat cells validating the presence of FAF1 in the authentic Fas-DISC. Overexpression of FAF1 in Jurkat cells caused significant apoptotic death. In addition, the FAF1 deletion mutant lacking the N terminus where Fas, FADD, and caspase-8 interact protected Jurkat cells from Fas-induced apoptosis demonstrating dominant-negative phenotype. Cell death by overexpression of FAF1 was suppressed significantly in both FADD- and caspase-8-deficient Jurkat cells when compared with that in their parental Jurkat cells. Collectively, our data show that FAF1 is a member of Fas-DISC acting upstream of caspase-8.  相似文献   

10.
Death receptors in the TNF receptor superfamily signal for apoptosis via the ordered recruitment of FADD and caspase-8 to a death-inducing signaling complex (DISC). However, the nature of the protein-protein interactions in the signaling complex is not well defined. Here we show that FADD self-associates through a conserved RXDLL motif in the death effector domain (DED). Despite exhibiting similar binding to both Fas and caspase-8 and preserved overall secondary structure, FADD RDXLL motif mutants cannot reconstitute FasL- or TRAIL-induced apoptosis and fail to recruit caspase-8 into the DISC of reconstituted FADD-deficient cells. Abolishing self-association can transform FADD into a dominant-negative mutant that interferes with Fas-induced apoptosis and formation of microscopically visible receptor oligomers. These findings suggest that lateral interactions among adapter molecules are required for death receptor apoptosis signaling and implicate self-association into oligomeric assemblies as a key function of death receptor adapter proteins in initiating apoptosis.  相似文献   

11.
Caspase-8 is the most proximal caspase in the caspase cascade and possesses a prodomain consisting of two homologous death effector domains (DEDs). We have discovered that caspase-8 and its homologs can physically interact with tumor necrosis factor receptor-associated factor family members and activate the c-Jun N-terminal kinase (JNK, or stress-activated protein kinase) pathway. This ability resides in the DED-containing prodomain of these proteins and is independent of their role as cell death proteases. A point mutant in the first DED of caspase-8 can block JNK activation induced by several death domain receptors. Inhibition of JNK activation blocks apoptosis mediated by caspase-10, Mach-related inducer of toxicity/cFLIP, and Fas/CD95, thereby suggesting a cooperative role of this pathway in the mediation of caspase-induced apoptosis.  相似文献   

12.
13.
We have further examined the mechanism by which phorbol ester-mediated protein kinase C (PKC) activation protects against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. We now report that activation of PKC targets death receptor signaling complex formation. Pre-treatment with 12-O-tetradecanoylphorbol-13-acetate (PMA) led to inhibition of TRAIL-induced apoptosis in HeLa cells, which was characterized by a reduction in phosphatidylserine (PS) externalization, decreased caspase-8 processing, and incomplete maturation and activation of caspase-3. These effects of PMA were completely abrogated by the PKC inhibitor, bisindolylmaleimide I (Bis I), clearly implicating PKC in the protective effect of PMA. TRAIL-induced mitochondrial release of the apoptosis mediators cytochrome c and Smac was blocked by PMA. This, together with the observed decrease in Bid cleavage, suggested that PKC activation modulates apical events in TRAIL signaling upstream of mitochondria. This was confirmed by analysis of TRAIL death-inducing signaling complex formation, which was disrupted in PMA-treated cells as evidenced by a marked reduction in Fas-associated death domain protein (FADD) recruitment, an effect that could not be explained by any change in FADD phosphorylation state. In an in vitro binding assay, the intracellular domains of both TRAIL-R1 and TRAIL-R2 bound FADD: activation of PKC significantly inhibited this interaction suggesting that PKC may be targeting key apical components of death receptor signaling. Significantly, this effect was not confined to TRAIL, because isolation of the native TNF receptor signaling complex revealed that PKC activation also inhibited TNF receptor-associated death domain protein recruitment to TNF-R1 and TNF-induced phosphorylation of IkappaB-alpha. Taken together, these results show that PKC activation specifically inhibits the recruitment of key obligatory death domain-containing adaptor proteins to their respective membrane-associated signaling complexes, thereby modulating TRAIL-induced apoptosis and TNF-induced NF-kappaB activation, respectively.  相似文献   

14.
Stress-induced apoptosis is mediated primarily through the intrinsic pathway that involves caspase-9. We previously reported that in caspase-9-deficient cells, a protein complex containing ATG5 and Fas-associated death domain (FADD) facilitated caspase-8 activation and cell death in response to endoplasmic reticulum (ER) stress. Here, we investigated whether this complex could be activated by other forms of cell stress. We show that diverse stress stimuli, including etoposide, brefeldin A and paclitaxel, as well as heat stress and gamma-irradiation, caused formation of a complex containing ATG5-ATG12, FADD and caspase-8 leading to activation of downstream caspases in caspase-9-deficient cells. We termed this complex the ‘stressosome’. However, in these cells, only ER stress and heat shock led to stressosome-dependent cell death. Using in silico molecular modelling, we propose the structure of the stressosome complex, with FADD acting as an adaptor protein, interacting with pro-caspase-8 through their respective death effector domains (DEDs) and interacting with ATG5-ATG12 through its death domain (DD). This suggests that the complex could be regulated by cellular FADD-like interleukin-1β-converting enzyme–inhibitory protein (cFLIPL), which was confirmed experimentally. This study provides strong evidence for an alternative mechanism of caspase-8 activation involving the stressosome complex.  相似文献   

15.
Death receptor-induced cell killing   总被引:40,自引:0,他引:40  
Apoptosis pathways activated by death receptors of the tumour necrosis factor (TNF) family such as Fas, TNFR1, or the TRAIL receptors DR4 and DR5 are implicated in diverse diseases. These are also the best-understood apoptosis pathways and many of our ideas about apoptosis regulation come from studying these pathways. Cell killing from such receptors occurs because of recruitment to the receptor of the adaptor protein FADD, which in turn recruits the pro form of caspase-8. Aggregation of pro-caspase-8 leads to its auto-activation and subsequent activation of effector caspases such as caspase-3. The apoptotic signal can be amplified through the mitochondria and inhibited through the action of competing molecules such as the inhibitor c-FLIP, which binds to the receptor complex in place of caspase-8. This simple mechanism explains much of the cell death that is induced by death receptors. However, recent studies indicate that we must incorporate new information into this model. Some examples that add new layers of complexity will be discussed in this review.  相似文献   

16.
17.
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) belongs to the Tumor necrosis factor (TNF) family of death-inducing ligands, and signaling downstream of TRAIL ligation to its receptor(s) remains to be fully elucidated. Components of the death-inducing signaling complex (DISC) and TRAIL signaling downstream of receptor activation were examined in TRAIL - sensitive and -resistant models of human rhabdomyosarcoma (RMS). TRAIL ligation induced DISC formation in TRAIL-sensitive (RD, Rh18, Rh30) and TRAIL-resistant RMS (Rh28, Rh36, Rh41), with recruitment of FADD and procaspase-8. In RD cells, overexpression of dominant-negative FADD (DNFADD) completely abolished TRAIL-induced cell death in contrast to dominant-negative caspase- 8 (DNC8), which only partially inhibited TRAIL-induced apoptosis, growth inhibition, or loss in clonogenic survival. DNC8 did not inhibit the cleavage of Bid or the activation of Bax. Overexpression of Bcl-2 or Bcl-xL inhibited TRAIL-induced apoptosis, growth inhibition, and loss in clonogenic survival. Bcl-2 and Bcl-xL, but not DNC8, inhibited TRAIL-induced Bax activation. Bcl-xL did not inhibit the early activation of caspase-8 (<4 h) but inhibited cleavage of Bid, suggesting that Bid is cleaved downstream of the mitochondria, independent of caspase-8. Exogenous addition of sphingosine also induced activation of Bax via a caspase-8-and Bid-independent mechanism. Further, inhibition of sphingosine kinase completely protected cells from TRAIL-induced apoptosis. Data demonstrate that in RMS cells, the TRAIL signaling pathway circumvents caspase-8 activation of Bid upstream of the mitochondria and that TRAIL acts at the level of the mitochondria via a mechanism that may involve components of the sphingomyelin cycle.  相似文献   

18.
Members of the viral Flice/caspase-8 inhibitory protein (v-FLIP) family prevent induction of apoptosis by death receptors through inhibition of the processing and activation of procaspase-8 and -10 at the level of the receptor-associated death-inducing signaling complex (DISC). Here, we have addressed the molecular function of the v-FLIP member MC159 of the human molluscum contagiosum virus. MC159 FLIP powerfully inhibited both caspase-dependent and caspase-independent cell death induced by Fas. The C-terminal region of MC159 bound TNF receptor-associated factor (TRAF)3, was necessary for optimal TRAF2 binding, and mediated the recruitment of both TRAFs into the Fas DISC. TRAF-binding-deficient mutants of MC159 showed impaired inhibition of FasL-induced caspase-8 processing and Fas internalization, and had reduced antiapoptotic activity. Our findings provide evidence that a MC159/TRAF2/TRAF3 complex regulates a new aspect of Fas signaling, and identify MC159 FLIP as a molecule that targets multiple features of Fas-induced cell death.  相似文献   

19.
Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED. [BMB Reports 2014; 47(9): 488-493]  相似文献   

20.
The cytokine TNF activates multiple signaling pathways leading to cellular responses ranging from proliferation and survival to apoptosis. While most of these pathways have been elucidated in detail over the past few years, the molecular mechanism leading to the activation of the MAP kinases ERK remains ill defined and is controversially discussed. Therefore, we have analyzed TNF-induced ERK activation in various human and murine cell lines and show that it occurs in a cell-type-specific manner. In addition, we provide evidence for the involvement of the signaling components Fas-associated death domain protein (FADD), caspase-8, and c-FLIP in the pathway activating ERK in response to TNF. This conclusion is based on the following observations: (I) Overexpression of FADD, caspase-8, or a c-FLIP protein containing the death effector domains only leads to enhanced and prolonged ERK activation after TNF treatment. (II) TNF-induced ERK activation is strongly diminished in the absence of FADD. Interestingly, the enzymatic function of caspase-8 is not required for TNF-induced ERK activation. Additional evidence suggests a role for this pathway in the proliferative response of murine fibroblasts to TNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号