首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One-dimensional and two-dimensional 1H-NMR methods and paramagnetic difference spectroscopy have defined cation binding domains on the surface of the tryptic fragment of microsomal cytochrome b5. The addition of tris(ethylenediamine) chromium(III) [Cr(en)3(3+)] to solutions of ferricytochrome b5 reveals at least three distinct sites on the surface of the protein to which highly charged cations may bind (20 mM phosphate pH 7.0, T = 300 K). Surprisingly only one of these sites is located close to the haem edge region of the protein, whilst the remaining two sites are more remote. Site I contains the exposed haem C13 propionate and a series of carboxylate residues that includes glutamates 37, 38, 43, 44, and 48. Sites II and III are located away from the haem edge region and are delineated by the broadening of aromatic resonances of histidines 26 and 80. Further investigation of the interaction between Cr(en)3(3+) and cytochrome b5 using two-dimensional double-quantum-filtered correlated spectroscopy shows that resonances assigned to Glu59, Asp60, Glu79, Asp82 and Asp83 are broadened with the distribution of these charged side chains correlating with the relaxation broadening observed from one-dimensional experiments. In a binary complex with ferricytochrome c, Cr(en3(3+) broadens many cytochrome b45 resonances including the haem propionates, His26, Ala54, Thr55 and His80. Although the pattern of line-broadening of resonances at sites II and III is unaltered by complex formation, cytochrome c shields residues at site I, the haem edge site. The results indicate that the interaction between cytochrome b5 and c in a binary complex involves multiple protein configurations.  相似文献   

2.
The interaction of three types of chromium(III) complexes, [Cr(salen) (H2O2]+, [Cr(en)3]3+, and [Cr(EDTA) (H2O)]- with AGP has been investigated. [Cr(salen) (H2O2]+, [Cr(en)3]3+ and [Cr(EDTA) (H2O]- bind to Human alpha1-acid glycoprotein with a protein:metal ratio of 1:8, 1:6, and 1:4, respectively. The binding constant, K(b) was estimated to be 1.37 +/- 0.12 x 10(5) M(-1), 1.089 +/- 0.05 x 10(5) M(-1) and 5.3 +/- 0.05 x 10(4) M(-1) for [Cr(salen) (H2O2]+, [Cr(en)3]3+, and [Cr(EDTA) (H2O)]-, respectively. [Cr(en)3]3+ has been found to induce structural transition of AGP from the native twisted beta sheet to a more compact alpha-helix. The complexes, [Cr(salen) (H2O2]+ and [Cr(EDTA) (H2O]-, in the presence of H2O2, have been found to bring about nonspecific cleavage of AGP, whereas [Cr(en)3]3+ does not bring about any protein damage. Treatment of [Cr(salen) (H2O)2]+-protein adduct with iodosyl benzene on the other hand led to site specific cleavage of the protein. These results clearly demonstrate that protein damage brought about by chromium(III) complexes depends on the nature of the coordinated ligand, nature of the metal complex, and the nature of the oxidant.  相似文献   

3.
M R Mauk  A G Mauk  P C Weber  J B Matthew 《Biochemistry》1986,25(22):7085-7091
The stability of the complex formed between cytochrome c and dimethyl ester heme substituted cytochrome b5 (DME-cytochrome b5) has been determined under a variety of experimental conditions to evaluate the role of the cytochrome b5 heme propionate groups in the interaction of the two native proteins. Interaction between cytochrome c and the modified cytochrome b5 was found to produce a difference spectrum in the visible range that is very similar to that generated by the interaction of the native proteins and that can be used to monitor complex formation between the two proteins. At pH 8 [25 degrees C (HEPPS), I = 5 mM], DME-cytochrome b5 and cytochrome c form a 1:1 complex with an association constant KA of 3 (1) X 10(6) M-1. This pH is the optimal pH for complex formation between these two proteins and is significantly higher than that observed for the interaction between the two native proteins. The stability of the complex formed between DME-cytochrome b5 and cytochrome c is strongly dependent on ionic strength with KA ranging from 2.4 X 10(7) M-1 at I = 1 mM to 8.2 X 10(4) M-1 at I = 13 mM [pH 8.0 (HEPPS), 25 degrees C]. Calculations for the native, trypsin-solubilized form of cytochrome b5 and cytochrome c confirm that the intermolecular complex proposed by Salemme [Salemme, F. R. (1976) J. Mol. Biol. 102, 563] describes the protein-protein orientation that is electrostatically favored at neutral pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The reduction of hexavalent chromium (Cr(VI] by the monooxygenase components was studied. Both a reconstituted system of cytochrome P-450 (P-450) and cytochrome b5 (b5) with NADPH was capable of reducing Na2CrO4 (30 microM) provided anaerobic atmosphere. The rates were 1.29 nmol Cr.min-1 nmol P-450(-1) and 0.73 nmol Cr.min-1 nmol b5(-1). Using NADH instead of NADPH gave very low reducing activities, confirming the enzymic nature of the P-450 dependent Cr(VI) reductase reaction. Oxygen, 22% (air) and 0.1% gave 89% and 69% inhibition of Cr(VI) reducing activity, respectively. Carbon monoxide (100%) caused an inhibition of about 37% and 44% for P-450 and b5, respectively. Externally added flavin mononucleotide (FMN) (3 microM) or Fe-ADP (10 microM) to the complete system stimulated the enzymatic reaction about 2-fold and 3-fold, respectively.  相似文献   

5.
A water soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), has been used to crosslink horse heart cytochrome c and trypsin-solubilized bovine liver microsomal cytochrome b5. The reaction was conducted under a variety of solution conditions, and the products were purified by a combination of gel filtration and ion-exchange chromatography. Under all conditions of pH, ionic strength, EDC/protein ratio and reaction time that were studied, multiple 1:1 crosslinked complexes were observed with no evidence of a single, dominant species. Acetate, which is often used as a quencher of such reactions, was found to increase the complexity of the reaction products, presumably through EDC-promoted coupling to cytochrome c. Hydroxylamine treatment of the crosslinked complexes, a procedure frequently used to reverse EDC modification of tyrosyl residues, did not reduce the number of crosslinked components observed. The cytochrome b5 heme group was readily extracted from each of the 1:1 crosslinked complexes by standard techniques, so the crosslinking of heme propionate 7 with Lys79 of cytochrome c that might have been anticipated on the basis of molecular graphics modeling [Salemme, F.R. (1976) J. Mol. Biol. 102, 563-568] was not evident from this analysis. Analysis of HPLC tryptic peptide maps produced from crosslinked complexes revealed reduced specificity of trypsin in hydrolysis of EDC-crosslinked protein-protein complexes and unsatisfactory resolution of crosslinked or branched peptides. Nevertheless, it was possible to demonstrate that residues 52-72 of cytochrome b5, a region predicted to be critical to interaction with cytochrome b5 [Salemme, F.R. (1976) J. Mol. Biol. 102, 563-568] was absent from all peptide maps of 1:1 cytochrome c.cytochrome b5 complexes. Based on these results and a review of the literature involving EDC crosslinking of electron transfer proteins, we conclude that the techniques available for specific protein hydrolysis and separation of crosslinked peptides are not adequate to permit routine unambiguous identification of crosslinking sites in carbodiimide-crosslinked complexes.  相似文献   

6.
The reduction of cytochrome c by cytochrome b5 was studied over a wide range of ionic strengths in four different buffer systems. The reaction rate decreased linearly as the I1/2 was increased, suggesting that electrostatic interactions are important in the interaction. The ionic strength dependence of the reaction rate was in quantitative agreement with the theory of Wherland & Gray [Wherland, S., & Gray, H.B. (1976) Proc. Natl. Acad. Sci U.S.A. 73, 2950] only if the effective radius of the interaction was 2 A. This indicates that the interaction between the two proteins is best described as the sum of n complementary charge interactions, each involving a specific lysine on cytochrome c and a specific carboxyl group on cytochrome b5. The number of complementary charge interactions, n, was calculated to be five to seven, in agreement with the results of our specific modification studies. Ultracentrifugation and gel permeation techniques were used to demonstrate that cytochrome b5 and cytochrome c formed a stable complex at low ionic strength.  相似文献   

7.
Y Wu  Y Wang  C Qian  J Lu  E Li  W Wang  J Lu  Y Xie  J Wang  D Zhu  Z Huang  W Tang 《European journal of biochemistry》2001,268(6):1620-1630
Using 1617 meaningful NOEs with 188 pseudocontact shifts, a family of 35 conformers of oxidized bovine microsomal cytochrome b5 mutant (E44/48/56A/D60A) has been obtained and is characterized by good resolution (rmsd to the mean structure are 0.047 +/- 0.007 nm and 0.095 +/- 0.008 nm for backbone and heavy atoms, respectively). The solution structure of the mutant, when compared with the X-ray structure of wild-type cytochrome b(5), has no significant changes in the whole folding and secondary structure. The binding between cytochrome b(5) and cytochrome c shows that the association constant of the mutant-cytochrome c complex is much lower than the one for wild-type complex (2.2 x 10(4) M(-1) vs. 5.1 x 10(3) M(-1)). The result suggests the four acidic residues have substantial effects on the formation of the complex between cytochrome b(5) and cytochrome c, and therefore it is concluded reasonably that the electrostatic interaction plays an important role in maintaining the stability and specificity of the complex formed. The competition between the ferricytochrome b(5) mutant and [Cr(oxalate)(3)](3-) for ferricytochrome c shows that site III of cytochrome c, which is a strong binding site to wild-type cytochrome b(5), still binds to the mutant with relatively weaker strength. Our results indicate that certain bonding geometries do occur in the interaction between the present mutant and cytochrome c and these geometries, which should be quite different from the ones of the Salemme and Northrup models.  相似文献   

8.
M R Mauk  L S Reid  A G Mauk 《Biochemistry》1982,21(8):1843-1846
The interaction between cytochrome c and the tryptic fragment of cytochrome b5 has been found to produce a difference spectrum in the Soret region with a maximum absorbance at 416 nm. The intensity of this difference has been used to determine the stoichiometry of complex formation and the stability of the complex formed. At pH 7.0 [25 degrees C (phosphate), mu = 0.01 M], the two proteins were found to form a 1:1 complex with an association constant, KA, of 8(3) x 10(4) M-1. The stability of the complex was found to be strongly dependent on ionic strength with KA increasing to 4(3) x 10(6) M-1 at mu = 0.001 M [25 degrees C, pH 7.0 (phosphate)]. Analysis of the dependence of KA on pH from pH 6.5 to 8 demonstrated that this complex is maximally stable between pH 7 and 8 or about midway between the isoelectric points of the two proteins. Analysis of the temperature dependence of KA revealed that formation of the complex between the two proteins is largely entropic in origin with delta Ho = 1 +/- 3 kcal/mol and delta So = 33 +/- 11 eu [pH 7.0 (phosphate), mu = 0.001 M]. This result may be explained either by the model of Clothia and Janin [Clothia, C., & Janin, J. (1975) Nature (London) 256, 705] in terms of extensive solvent reorganization upon complexation or by the model of Ross and Subramanian [Ross, P. D., & Subramanian, S. (1981) Biochemistry 20, 3096] in which the negative enthalpic and entropic contributions of short-range protein-protein interactions are offset by proton release.  相似文献   

9.
Hom K  Ma QF  Wolfe G  Zhang H  Storch EM  Daggett V  Basus VJ  Waskell L 《Biochemistry》2000,39(46):14025-14039
In an effort to gain greater insight into the molecular mechanism of the electron-transfer reactions of cytochrome b(5), the bovine cytochrome b(5)-horse cytochrome c complex has been investigated by high-resolution multidimensional NMR spectroscopy using (13)C, (15)N-labeled cytochrome b(5) expressed from a synthetic gene. Chemical shifts of the backbone (15)N, (1)H, and (13)C resonances for 81 of the 82 residues of [U-90% (13)C,U-90% (15)N]-ferrous cytochrome b(5) in a 1:1 complex with ferrous cytochrome c were compared with those of ferrous cytochrome b(5) in the absence of cytochrome c. A total of 51% of these residues showed small, but significant, changes in chemical shifts (the largest shifts were 0.1 ppm for the amide (1)H, 1.15 for (13)C(alpha), 1.03 ppm for the amide (15)N, and 0.15 ppm for the (1)H(alpha) resonances). Some of the residues exhibiting chemical shift changes are located in a region that has been implicated as the binding surface to cyt c [Salemme, F. R. (1976) J. Mol. Biol. 10, 563-568]. Surprisingly, many of the residues with changes are not located on this surface. Instead, they are located within and around a cleft observed to form in a molecular dynamics study of cytochrome b(5) [Storch, E. M., and Daggett, V. (1995) Biochemistry 34, 9682-9693](.) The rim of this cleft can readily accommodate cytochrome c. Molecular dynamics simulations of the Salemme and cleft complexes were performed for 2 ns and both complexes were stable.  相似文献   

10.
The interaction between eukaryotic cytochrome c and the tryptic fragment of bovine liver microsomal cytochrome b5 was studied by 1H-n.m.r. spectroscopy, and a procedure was developed that may be generally applicable to the study of macromolecular interactions by n.m.r. At pH6.3 (27 degrees C, I approx. 0.04) the two ferricytochromes were found to form a 1:1 complex with an association constant of approx. 10(3) M -1. The protein--protein-interaction region was found to encompass the region of the surface of horse cytochrome c that includes Ile-81, Phe-82, Ala-83 and Ile-85, and Lys-13 and Lys-72 of horse cytochrome c were suggested to be involved in two important intermolecular interactions. Me3Lys-72 of Candida krusei cytochrome c was shown to be involved in the interaction.  相似文献   

11.
The reaction cycles of cytochrome P450s (P450) require input of two electrons. Electrostatic interactions are considered important driving forces in the association of P450s with their redox partners, which in turn facilitates the transfer of the two electrons. In this study, the cross-linking reagent, 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC), was used to covalently link cytochrome P450 2E1 (CYP2E1) with cytochrome b(5) (b(5)) through the formation of specific amide bonds between complementary charged residue pairs. Cross-linked peptides in the resulting protein complex were distinguished from non-cross-linked peptides using an (18)O-labeling method on the basis that cross-linked peptides incorporate twice as many (18)O atoms as non-cross-linked peptides during proteolysis conducted in (18)O-water. Subsequent tandem mass spectrometric (MS/MS) analysis of the selected cross-linked peptide candidates led to the identification of two intermolecular cross-links, Lys(428)(CYP2E1)-Asp(53)(b(5)) and Lys(434)(CYP2E1)-Glu(56)(b(5)), which provides the first direct experimental evidence for the interacting orientations of a microsomal P450 and its redox partner. The biological importance of the two ion pairs for the CYP2E1-b(5) interaction, and the stimulatory effect of b(5), was confirmed by site-directed mutagenesis. Based on the characterized cross-links, a CYP2E1-b(5) complex model was constructed, leading to improved insights into the protein interaction. The described method is potentially useful for mapping the interactions of various P450 isoforms and their redox partners, because the method is relatively rapid and sensitive, and is capable of suggesting not only protein interacting regions, but also interacting orientations.  相似文献   

12.
K Koike  M Kobayashi  K Yaginuma  M Taira  E Yoshida  M Imai 《Gene》1982,20(2):177-185
The nucleotide sequences of the genes for cytochrome b and three potential transfer RNAs (tRNAPro, tRNAThr and tRNAGlu) in cloned rat mitochondrial DNA were determined. The derived amino acid sequence of the cytochrome b protein from the light strand indicated that the C-terminal amino acid is asparagine and the ochre termination codon is encoded in the DNA, in contrast to the the lack of termination codon in the reading frame of human [Anderson et al., Nature 290 (1981) 457] or mouse [Bibb et al., Cell 26 (1981) 167] mitochondrial DNA. The first ATG codon of the cytochrome b gene was spaced five nucleotides from the 5'-end of the tRNAGlu gene on the heavy strand. There was a single nucleotide spacing between the termination codon of the cytochrome b gene and the 5' end of the tRNAThr gene in the light strand. There was also a single nucleotide spacing between the 3'-end of the tRNAThr gene and the 3'-end of the tRNAPro gene on the heavy strand. The amino acid and nucleotide sequences of the cytochrome b genes of mammals and yeast [Nobrega and Tzagoloff, J. Biol. Chem. 255 (1980) 9828] were compared to reveal structural differences in two very different species. At the same time, amino acid substitutions in particular regions of the mammalian gene corresponding to the exon-intron boundaries in the yeast gene were noted. These genetic features are discussed in relation to the extreme compression of genetic information in the mammalian mitochondrial genome as related to the evolution of the gene organization and its sequence.  相似文献   

13.
The de novo design and synthesis of ruthenium-labeled cytochrome b5 that is optimized for the measurement of intracomplex electron transfer to cytochrome c are described. A single cysteine was substituted for Thr-65 of rat liver cytochrome b5 by recombinant DNA techniques [Stayton, P. S., Fisher, M. T., & Sligar, S. G. (1988) J. Biol. Chem. 263, 13544-13548]. The single sulfhydryl group on T65C cytochrome b5 was then labeled with [4-(bromomethyl)-4'-methylbipyridine] (bisbipyridine)ruthenium2+ to form Ru-65-cyt b5. The ruthenium group at Cys-65 is only 12 A from the heme group of cytochrome b5 but is not located at the binding site for cytochrome c. Laser excitation of the complex between Ru-65-cyt b5 and cytochrome c results in electron transfer from the excited state Ru(II*) to the heme group of Ru-65-cyt b5 with a rate constant greater than 10(6) s-1. Subsequent electron transfer from the heme group of Ru-65-cyt b5 to the heme group of cytochrome c is biphasic, with a fast-phase rate constant of (4 +/- 1) x 10(5) s-1 and a slow-phase rate constant of (3 +/- 1) x 10(4) s-1. This suggests that the complex can assume two different conformations with different electron-transfer properties. The reaction becomes monophasic and the rate constant decreases as the ionic strength is increased, indicating dissociation of the complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The interaction of isosafrole, 3,4,5,3',4',5'-hexabromobiphenyl (HBB) and hexachlorobiphenyl (HCB) with cytochrome P-450d was evaluated by characterization of estradiol 2-hydroxylase activity. Displacement of the isosafrole metabolite from microsomal cytochrome P-450d derived from isosafrole-treated rats resulted in a 160% increase in estradiol 2-hydroxylase. The increase was fully reversed by incubation with 1 microM HBB. Although isosafrole is capable of forming a complex with many different cytochrome P-450 isozymes, it appears to bind largely to cytochrome P-450d in vivo as was demonstrated by measuring the enzymatic activity of microsomal cytochromes P-450b, P-450c, and P-450d from isosafrole-treated rats. When estradiol 2-hydroxylase was measured in rats treated with increasing doses of HCB, there was a gradual decrease in microsomal enzyme activity despite a 20-fold increase in cytochrome P-450d. The ability of cytochrome P-450d ligands to stabilize the enzyme was investigated in two ways. First, cytochromes P-450c and P-450d were quantitated immunochemically in microsomes from rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at a dose which maximally induced total cytochrome P-450, followed by a single dose of a second inducer. The specific content of cytochrome P-450d was significantly increased when isosafrole or HCB was the second inducer but not when 3-methylcholanthrene was the second inducer. Second, the relative turnover of cytochrome P-450d was measured by the dual label technique. Following TCDD treatment, microsomal protein was labeled in vivo with [3H]leucine, the second inducer was given and protein was again labeled 3 days later with [14C]leucine. A higher ratio of 3H/14C in the cytochrome P-450d from isosafrole + TCDD- and HCB + TCDD-treated rats relative to TCDD (control)-treated rats suggested that isosafrole and HCB were able to retard the degradation of cytochrome P-450d, presumably by virtue of being tightly bound to the enzyme.  相似文献   

15.
Cytochrome c3 isolated from a sulfate-reducing bacterium, Desulfovibrio vulgaris Miyazaki F, is a tetraheme protein. Its physiological partner, [NiFe] hydrogenase, catalyzes the reversible oxidoreduction of molecular hydrogen. To elucidate the mechanism of electron transfer between cytochrome c3 and [NiFe] hydrogenase, the transient complex formation by these proteins was investigated by means of NMR. All NH signals of uniformly 15N-labeled ferric cytochrome c3 except N-terminus, Pro, and Gly73 were assigned. 1H-15N HSQC spectra were recorded for 15N-labeled ferric and ferrous cytochrome c3, in the absence and presence of hydrogenase. Chemical shift perturbations were observed in the region around heme 4 in both oxidation states. Additionally, the region between hemes 1 and 3 in ferrous cytochrome c3 was affected in the presence of hydrogenase, suggesting that the mode of interaction is different in each redox state. Heme 3 is probably the electron gate for ferrous cytochrome c3. To investigate the transient complex of cytochrome c3 and hydrogenase in detail, modeling of the complex was performed for the oxidized proteins using a docking program, ZDOCK 2.3, and NMR data. Furthermore, the roles of lysine residues of cytochrome c3 in the interaction with hydrogenase were investigated by site-directed mutagenesis. When the lysine residues around heme 4 were replaced by an uncharged residue, methionine, one by one, the Km of the electron-transfer kinetics increased. The results showed that the positive charges of Lys60, Lys72, Lys95, and Lys101 around heme 4 are important for formation of the transient complex with [NiFe] hydrogenase in the initial stage of the cytochrome c3 reduction. This finding is consistent with the most possible structure of the transient complex obtained by modeling.  相似文献   

16.
The lithiation of indole, using a slight excess of n-butyl lithium in THF, followed by methylation and reaction with [Cr(CO)6] in refluxing dibutyl ether, resulted in the formation of [Cr(η6-N-methylindole)(CO)3] (1a) and [Cr(η6-N-methyl-2-methylindole)(CO)3] (1b). In contrast, lithiation of quinoline in THF, silylation and the subsequent reaction with [Cr(CO)6] under similar reaction conditions, afforded [Cr(η6-N-trimethylsilyl-2-butyl-1,2-dihydroquinoline)(CO)3] (2) and [Cr(η6-{2-butyl-1,2,3,4-tetrahydroquinoline})(CO)3] (3). The formation of [Cr(η6-2,2′-bis{N-methylindolyl})(CO)3] (4) implied lithiation at the 2-position of 1a. However, metallation at the 7-position was also indicated during the same reaction. In the presence of [Mn(CO)5Br], product 4 and the transmetallation product [Cr(η6-{7-(N-methylindolyl)Mn(CO)5})(CO)3] (5) were isolated. Reaction with titanocene dichloride gave [Cr(η6-{2-(N-methylindolyl)TiCp2Cl})(CO)3] (6), which slowly converted into [TiCp2{Cr(η6-2-(N-methylindolyl)(CO)3}2] (7).  相似文献   

17.
Upon incubation of detergent-solubilized NADPH-cytochrome P-450 reductase and either cytochrome b5 or cytochrome c in the presence of a water-soluble carbodiimide, a 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), covalently cross-linked complex was formed. The cross-linked derivative was a heterodimer consisting of one molecule each of flavoprotein and cytochrome, and it was purified to 90% or more homogeneity. The binary covalent complex between the flavoprotein and cytochrome b5 was exclusively observed following incubation of all three proteins including NADPH-cytochrome P-450 reductase, cytochrome b5, and cytochrome c in L-alpha-dimyristoylphosphatidylcholine vesicles, and no heterotrimer could be identified. The isolated reductase-cytochrome b5 complex was incapable of covalent binding with cytochrome c in the presence of EDC. No clear band for covalent complex formation between PB-1 and reductase was seen with the present EDC cross-linking technique. More than 90% of the cross-linked cytochrome c in the purified derivative was rapidly reduced upon addition of an NADPH-generating system, whereas approximately 80% of the cross-linked cytochrome b5 was rapidly reduced. These results showed that in the greater part of the complexes, the flavin-mediated pathway for reduction of cytochrome c or cytochrome b5 by pyridine nucleotide was intact. When reconstituted into phospholipid vesicles, the purified amphipathic derivative could hardly reduce exogenously added cytochrome c, cytochrome b5, or PB-1, indicating that the cross-linked cytochrome shields the single-electron-transferring interface of the flavoprotein. These results suggest that the covalent cross-linked derivative is a valid model of the noncovalent functional electron-transfer complex.  相似文献   

18.
The cytochrome bc(1) complex from Rhodobacter capsulatus was investigated by protein electrochemistry and visible/IR spectroscopy. Infrared difference spectra, which represent redox-induced conformational changes of cofactors and their protein environments, show signals of the hemes, the quinone Q(i), and small conformational changes of the protein backbone. Furthermore, band features were tentatively assigned to protonated aspartic or glutamic acids involved in the redox transition of each of the b hemes, a proline in that of the [2Fe-2S] protein, and an arginine in that of cytochrome b(H). The midpoint potential of the [2Fe-2S] protein was determined for the first time at physiological temperature to be +290 mV at pH 8.7. The reduced minus oxidized difference extinction coefficients of the alpha-bands of the cytochromes were calculated as 11.5, 19, and 6.7 mM(-1) cm(-1) for cytochromes c(1), b(H), and b(L), respectively. A novel method has been developed to quantify protonation reactions of the complex during the redox reactions of its cofactors by evaluation of the buffer signals in the midinfrared region. Values will be discussed in relation to the pH dependence of the midpoint potentials.  相似文献   

19.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

20.
Rui L  Pochapsky SS  Pochapsky TC 《Biochemistry》2006,45(12):3887-3897
Structural perturbations in cytochrome P450cam (CYP101) induced by the soluble fragment of cytochrome b5, a nonphysiological effector of CYP101, were investigated by NMR spectroscopy and compared with the perturbations induced by the physiological reductant and effector putidaredoxin (Pdx). Chemical shifts of perdeuterated [U-15N]CYP101 backbone amide (NH) resonances were monitored as a function of cytochrome b5 concentration by 1H-15N TROSY-HSQC experiments. The association of cytochrome b5 with the reduced CYP101-camphor-carbon monoxide complex (CYP-S-CO) perturbs many of the same resonances that Pdx does, including regions of the CYP101 molecule implicated in substrate access and orientation. The perturbations are smaller in magnitude than those observed with Pdx(r) due to a lower binding affinity (a Kd of 13 +/- 3 mM, for the reduced cytochrome b5-CYP-S-CO complex compared to a Kd of 26 +/- 12 microM for the Pdx-CYP-S-CO complex). The results are in accord with our previous suggestion that the observed perturbations are related to effector activity and support the proposal that the primary role of the effector is to populate the active conformation of CYP101 to prevent uncoupling [Pochapsky, S. S., et al. (2003) Biochemistry 42, 5649-5656]. A titratable perturbation is observed at the 1H resonance of the 8-CH3 group of CYP101-bound camphor upon addition of cytochrome b5, a phenomenon also associated with the formation of the CYP101 x Pdx complex, albeit with larger perturbations [Wei, J. Y., et al. (2005) J. Am. Chem. Soc. 127, 6974-6976]. The effector activity of the particular rat cytochrome b5 construct used for NMR studies was confirmed by monitoring the enzymatic turnover that yielded 5-exo-hydroxycamphor using gas chromatography and mass spectrometry. Finally, the common features of the perturbations observed in the NMR spectra of the two complexes are discussed, and their relevance to effector activity is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号