首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effect of fructose 2,6-biphosphate on fructose 1,6-bisphosphatase was reinvestigated in order to solve the apparent contradiction between competition with the substrate and the synergism with AMP, a strictly noncompetitive inhibitor. The effect of fructose 2,6-bisphosphate was compared to that of other ligands of the enzyme, which, like the substrate and methyl (alpha + beta)fructofuranoside 1,6-bisphosphate bind to the active site or which, like AMP, bind to an allosteric site. An increase in temperature or pH, or the presence of sulfosalicylate, lithium or higher concentrations of magnesium as well as partial proteolysis by subtilisin increased [I]0.5 for fructose 2,6-bisphosphate and AMP without affecting Km. With the exception of the pH change, all these conditions were also without effect on the affinity of the enzyme for the competitive inhibitor, methyl (alpha + beta)fructofuranoside 1,6-bisphosphate. These observations can be explained by assuming that fructose 2,6-bisphosphate has no affinity for the active site of fructose 1,6-bisphosphatase but binds to an allosteric site which is different from the AMP site. Fructose 2,6-bisphosphate is therefore classified as an allosteric competitive inhibitor and a model is proposed which explains its synergism with AMP as well as the various cooperative effects.  相似文献   

2.
Chicken liver fructose 1,6-bisphosphatase binds to blue dextran-Sepharose affinity columns and is eluted by AMP, an allosteric inhibitor of the enzyme. On the other hand, bumblebee fructose 1,6-bisphosphatase, which is not inhibited by AMP, does not bind to blue dextran-Sepharose. Chicken liver 1,6-bisphosphatase binds 3.6 mol of AMP/mol of enzyme, while the bumblebee enzyme binds no AMP. However, bumblebee fructose 1,6-bisphosphatase can be activated by subtilisin, indicating that it possesses a protease-sensitive region similar to that present in mammalian fructose 1,6-bisphosphatase.  相似文献   

3.
Rabbit liver fructose 1,6-bisphosphatase is converted by subtilisin to a form with smaller subunits and modified catalytic and allosteric properties. Analysis of the changes in the catalytic properties of the enzyme during digestion with subtilisin indicates that these properties depend on the presence of strong functional interactions between all four subunits in the molecule. On the other hand, sensitivity to inhibition by AMP appears to depend only on intrachain interactions. Changes in subunit interaction relating to relaxation in protein conformation during digestion with subtilisin were also inferred from the changes in concentration dependency for the effects of urea on the fluorescent emission spectrum. Structural changes around the region containing the single tryptophan residue appear to be related to the changes in catalytic properties.  相似文献   

4.
The inhibition of rabbit liver fructose 1,6-bisphosphatase (EC 3.1.3.11) by fructose 2,6-bisphosphate (Fru-2,6-P2) is shown to be competitive with the substrate, fructose 1,6-bisphosphate (Fru-1,6-P2), with Ki for Fru-2,6-P2 of approximately 0.5 μm. Binding of Fru-2,6-P2 to the catalytic site is confirmed by the fact that it protects this site against modification by pyridoxal phosphate. Inhibition by Fru-2,6-P2 is enhanced in the presence of a noninhibitory concentration (5 μm) of the allosteric inhibitor AMP and decreased by modification of the enzyme by limited proteolysis with subtilisin. Fru-2,6-P2, unlike the substrate Fru-1,6-P2, protects the enzyme against proteolysis by subtilisin or lysosomal proteinases.  相似文献   

5.
Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate   总被引:20,自引:0,他引:20  
Rat liver fructose-1,6-bisphosphatase, which was assayed by measuring the release of 32P from fructose 1,6-[1-32P]bisphosphate at pH 7.5, exhibited hyperbolic kinetics with regard to its substrate. beta-D-Fructose 2,6-bisphosphate, an activator of hepatic phosphofructokinase, was found to be a potent inhibitor of the enzyme. The inhibition was competitive in nature and the Ki was estimated to be 0.5 microM. The Hill coefficient for the reaction was 1.0 in the presence and absence of fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate also enhanced inhibition of the enzyme by the allosteric inhibitor AMP. The possible role of fructose 2,6-bisphosphate in the regulation of substrate cycling at the fructose-1,6-bisphosphatase step is discussed.  相似文献   

6.
Under conditions used previously for demonstrating glycolytic oscillations in muscle extracts (pH 6.65, 0.1 to 0.5 mM ATP), phosphofructokinase from rat skeletal muscle is strongly activated by micromolar concentrations of fructose diphosphate. The activation is dependent on the presence of AMP. Activation by fructose diphosphate and AMP, and inhibition by ATP, is primarily due to large changes in the apparent affinity of the enzyme for the substrate fructose 6-phosphate. These control properties can account for the generation of glycolytic oscillations. The enzyme was also studied under conditions approximating the metabolite contents of skeletal muscle in vivo (pH 7.0, 10mM ATP, 0.1 mM fructose 6-phosphate). Under these more inhibitory conditions, phosphofructokinase is strongly activated by low concentrations of fructose diphosphate, with half-maximal activation at about 10 muM. Citrate is a potent inhibitor at physiological concentrations, whereas AMP is a strong activator. Both AMP and citrate affect the maximum velocity and have little effect on affinity of the enzyme for fructose diphosphate.  相似文献   

7.
1. The kinetics of the reaction catalysed by fructose bisphosphatase have been studied at pH 7.2 and at pH 9.5. The activity of the enzyme was shown to respond sigmoidally to increasing concentrations of free Mg2+ or Mn2+ ions at pH 7.2, whereas the dependence was hyperbolic at pH 9.5. At both pH values the enzyme responded hyperbolically to increasing concentrations of fructose 1,6-bisphosphate, although inhibition was observed at higher concentrations of this substrate. This high substrate inhibition was shown to be partial in nature and the enzyme was found to be more sensitive at pH 7.2 than at pH 9.5. 2. The properties of the enzyme, are consistent with the enzyme obeying either a random-order equilibrium mechanism or a compulsory-order steady-state mechanism in which fructose bisphosphate binds to the enzyme before the cation. 3. Reaction of the enzyme with a four-fold molar excess of p-chloromercuribenzoate caused activation of the enzyme when its activity was assayed in the presence of MN2+ ions but inhibition when Mg2+ ions were used. Higher concentrations of p-chloromercuribenzoate caused inhibition. This activation at low p-chloromercuribenzoate concentrations, and the reaction of 5,5'-dithio-bis(2-nitrobenzoate) with the four thiol groups in the enzyme that reacted rapidly with this reagent, were prevented or slowed by the presence of inhibitory, but not non-inhibitory, concentrations of fructose bisphosphate. After reaction with a four-fold molar excess of p-chloromercuribenzoate the enzyme was no longer sensitive to high substrate inhibition by fructose bisphosphate.  相似文献   

8.
The ligand-dependent susceptibility to heat inactivation and to tryptic digestion and the intrinsic fluorescence of the fructose 1,6-bisphosphate-activated pyruvate kinase from Escherichia coli were investigated in the absence and in the presence of physiological ligands. With respect to the enzyme alone, binding of the allosteric activator fructose 1,6-bisphosphate makes the protein sensitive to tryptic attack and thermolabile, while binding of phosphoenolpyruvate and Mg2+, but not of either ligand separately, induces in the enzyme a highly thermostable conformation, the attainment of which does not require an ordered binding sequence of the two ligands. The apparent loosening of the enzyme structure induced by fructose bisphosphate suggests that the activation it exerts at low phosphoenolpyruvate concentration might be due to an increased accessibility of substrate to the active site.  相似文献   

9.
Fructose 1,6-bisphosphate decreases the activation of yeast 6-phosphofructokinase (ATP:fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.11) by fructose 2,6-bisphosphate, especially at cellular substrate concentrations. AMP activation of the enzyme is not influenced by fructose 1,6-bisphosphate. Inorganic phosphate increases the activation by fructose 2,6-bisphosphate and augments the deactivation of the fructose 2,6-bisphosphate activated enzyme by fructose 1,6-bisphosphate. Because various states of yeast glucose metabolism differ in the levels of the two fructose bisphosphates, the observed interactions might be of regulatory significance.  相似文献   

10.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

11.
Fructose 2,6-bisphosphate, a potent inhibitor of fructose-1,6-bisphosphatases, was found to be an inhibitor of the Escherichia coli enzyme. The substrate saturation curves in the presence of inhibitor were sigmoidal and the inhibition was much stronger at low than at high substrate concentrations. At a substrate concentration of 20 μM, 50% inhibition was observed at 4.8 μM fructose 2,6-bisphosphate. Escherichia coli fructose-1,6-bisphosphatase was inhibited by AMP (Kj = 16 μM) and phosphoenolpyruvate caused release of AMP inhibition. However, neither AMP inhibition nor its release by phosphoenolpyruvate was affected by the presence of fructose 2,6-bisphosphate. The results obtained, together with previous observations, provide further evidence for the fructose 2,6-bisphosphate-fructose-1,6-bisphosphatase active site interaction.  相似文献   

12.
Modification of a highly reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase with N-ethylmaleimide results in the loss of activation of the enzyme by monovalent cations. Low concentrations of fructose 2,6-bisphosphate or high (inhibitory) levels of fructose 1,6-bisphosphate protect the enzyme against the loss of monovalent cation activation, while non-inhibitory concentrations of the substrate gave partial protection. The allosteric inhibitor AMP markedly increases the reactivity of the cysteine residue. The results indicate that fructose 2,6-bisphosphate can protect the enzyme against the loss of potassium activation by binding to an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit the enzyme by binding to this allosteric site.  相似文献   

13.
Limited treatment of native pig kidney fructose-1,6-bisphosphatase (50 microM enzyme subunit) with [14C]N-ethylmaleimide (100 microM) at 30 degrees C, pH 7.5, in the presence of AMP (200 microM) results in the modification of 1 reactive cysteine residue/enzyme subunit. The N-ethylmaleimide-modified fructose-1,6-bisphosphatase has a functional catalytic site but is no longer inhibited by fructose 2,6-bisphosphate. The enzyme derivative also exhibits decreased affinity toward Mg2+. The presence of fructose 2,6-bisphosphate during the modification protects the enzyme against the loss of fructose 2,6-bisphosphate inhibition. Moreover, the modified enzyme is inhibited by monovalent cations, as previously reported (Reyes, A., Hubert, E., and Slebe, J.C. (1985) Biochem. Biophys. Res. Commun. 127, 373-379), and does not show inhibition by high substrate concentrations. A comparison of the kinetic properties of native and N-ethylmaleimide-modified fructose-1,6-bisphosphatase reveals differences in some properties but none is so striking as the complete loss of fructose 2,6-bisphosphate sensitivity. The results demonstrate that fructose 2,6-bisphosphate interacts with a specific allosteric site on fructose-1,6-bisphosphatase, and they also indicate that high levels of fructose 1,6-bisphosphate inhibit the enzyme by binding to this fructose 2,6-bisphosphate allosteric site.  相似文献   

14.
An improved procedure is described for the purification of fructose 1,6-bisphosphatase (FbPase) from chicken liver. The purified enzyme shows a single band in gel electrophoresis either in the presence or absence of sodium dodecyl sulfate. From 200 g of frozen liver, we have obtained about 29 mg of homogeneous enzyme, with the pH profile indistinguishable from that of the enzyme in crude extracts. The overall recovery of enzyme activity is about 71%. The FbPase protein was estimated to represent approximately 0.36% of the total soluble protein of crude liver extract. Treatment of purified enzyme with papain or subtilisin results in a rapid increase in activity at pH 9.2 and a gradual decrease at pH 7.5, while digestion with trypsin or chymotrypsin results in a concomitant decrease in activities at both pH 9.2 and 7.5. The rates of hydrolysis by these four proteases are all markedly decreased in the presence of AMP. Both AMP and fructose 1,6-bisphosphate increase the thermal stability of the enzyme, and their effects are additive. Attempts were made to investigate the structural requirements for histidine activation. The results suggest that activation by this amino acid involves not only the imidazole ring but also the α-amino and α-carboxyl groups.  相似文献   

15.
F Marcus 《Biochemistry》1975,14(17):3916-3921
Modification of pig kidney fructose 1,6-bisphosphatase with 2,3-butanedione (in the presence of AMP) results in the loss of activation of the enzyme by monovalent cations. Under these conditions about 8 arginyl residues per mole of enzyme were modified. No other residues were modified. No loss of monovalent cation activation occurs when modification with 2,3-butanedione is carried out in the presence of AMP plus the substrate fructose 1,6-bisphosphate and 3.2 less arginyl residues were modified. Since fructose 1,6-bisphosphatase contains 4 subunits, it is suggested that one arginyl residue per subunit plays an essential role in monovalent cation activation of the enzyme. Studies on sulfhydryl group reactivity toward 5,5'-dithiobis(2-nitrobenzoic acid) explain the protection exerted by fructose 1,6-bisphosphate against the loss of monovalent cation activation in terms of an enzyme conformational change induced by substrate, which makes unreactive the essential arginyl residue. The results of the present paper, as well as previous evidence, are discussed in terms of the mechanism of monovalent cation activation of fructose 1,6-biphosphatase.  相似文献   

16.
This paper reports that microM concentrations of fructose bisphosphate are titrated by rabbit muscle fructose-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) when the enzyme concentration is varied in the range which secures measurable initial velocities of reaction: a result that can only be explained by supposing that the enzyme has a greater affinity for fructose bisphosphate than suggested by Fernando, J., Enser, M., Pontremoli, S. and Horecker, B.L. (1968) Arch. Biochem. Biophys. 126, 599-606. The results also suggest that the keto form of the substrate may be the preferred configuration and that the enzyme is inhibited by magnesium-bound fructose bisphosphate.  相似文献   

17.
Cytoplasmic fructose-1,6-bisphosphatase has been purified from spinach leaves to apparent homogeneity. The enzyme is a tetramer of molecular weight about 130,000. At pH 7.5, the Km for fructose 1.6-bisphosphate was 2.5 micron, and for MgCl2 0.13 mM; the enzyme was specific for fructose 1,6-bisphosphate. Saturation with Mg2+ was achieved with lower concentrations at pH 8 than at pH 7. AMP and high concentrations of fructose 1,6-bisphosphate inhibited enzyme activity. Ammonium sulfate relieved the latter inhibition but was itself inhibitory when substrate concentrations were low. Acetylation studies demonstrated that the AMP regulatory site was distinct from the catalytic site. Cytoplasmic fructose-1,6-bisphosphatase may contribute to the regulation of sucrose biosynthesis in plant leaves.  相似文献   

18.
The substrate specificity of purified fructose bisphosphatase form B from Synechococcus leopoliensis (EC 3.1.3.11; cf. K-P Gerbling, M Steup, E Latzko 1985 Eur J Biochem 147: 207-215) has been investigated. Of the phosphate esters tested only fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate were hydrolyzed by the enzyme. Both sugar bisphosphates were cleaved at the carbon 1-ester. Fructose- and sedoheptulose bisphosphate stabilized the activated (i.e. tetrameric) state of the enzyme and prevented a slow inactivation that is observed in the absence of sugar bisphosphates. With the activated enzyme, kinetic constants (half-saturating substrate concentrations, maximal reaction velocity, and the catalytical constant) were similar for both fructose- and sedoheptulose bisphosphate. The data suggest that fructose bisphosphatase form B from Synechococcus leopoliensis can catalyze both bisphosphatase reactions within the reductive pentose phosphate cycle.  相似文献   

19.
Characterization of rat muscle fructose 1,6-bisphosphatase   总被引:1,自引:0,他引:1  
Fructose 1,6-bisphosphatase has been purified from rat muscle. Although the specific activity of the enzyme in the crude extract of rat muscle was extremely low, purification by the present procedure is highly reproducible. The purified enzyme showed a single band in SDS-polyacrylamide gel electrophoresis. The subunit molecular weight of the muscle enzyme was 37,500 in contrast to 43,000 in the case of the liver enzyme. Immunoreactivity of the muscle enzyme to anti-muscle and anti-liver fructose 1,6-bisphosphatase sera was clearly distinct from that of the liver enzyme. All one-dimensional peptide mappings of the muscle enzyme with staphylococcal V8 protease, chymotrypsin, and papain showed different patterns from those of the liver enzyme. When incubated with subtilisin, the extent of activation of muscle fructose 1,6-bisphosphatase at pH 9.1 was smaller than that of the liver enzyme. The subtilisin digestion pattern of the muscle enzyme on SDS-polyacrylamide gel electrophoresis was distinct from that of the liver enzyme. The AMP-concentration giving 50% inhibition of the muscle enzyme was 0.54 microM, whereas that of the liver enzyme was 85 microM. The concentrations of fructose 2,6-bisphosphate that gave 50% inhibition of rat muscle and liver enzymes were 6.3 and 1.5 microM, respectively. Fructose 1,6-bisphosphatase protein was not detected in soleus muscle by immunoelectroblotting with anti-muscle fructose 1,6-bisphosphatase serum.  相似文献   

20.
The fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) from the spore-forming bacterium Bacillus licheniformis was purified approximately 800-fold (with a 20% yield of activity) by a procedure that included ammonium sulfate precipitation, precipitation by MnCl2, and gamma-alumina gel absorption. Catalysis by this enzyme in vitro was specific for fructose 1,6-bisphosphate (Km of approximately 20 muM) and proceeded optimally at pH 8.0 to 8.5. Fructose-1,6-bisphosphatase was found to be rapidly inactivated by incubation in the presence of AMP or in the absence of Mn2+. The AMP inactivation was prevented by adding P-enolpyruvate to the incubation mixture. The enzyme was slowly inactivated when incubated in the presence of stabilizing concentrations of Mn2+ (5 mM) at protein concentrations of less than 8 mg of protein per ml. An additional system is produced during sporulation which specifically inactivates fructose bisphosphatase in vitro. This system, which is distinctly different from the AMP inactivating system, can be blocked by P-enolpyruvate. This fructose bisphosphatase, like fructose bisphosphatases from other sources, was strongly inhibited by AMP, exhibiting a Ki of approximately 5 muM. This inhibition, however, could be completely overcome by P-enolpyruvate. P-enolpyruvate was also found to be an activator of the enzyme and exhibited a Km of approximately 2 muM. This activation was prevented in a competitive manner by AMP, exhibiting a Ki of approximately 5 muM. No other effector of fructose bisphosphatase was identified in an extensive search. The specific activity of fructose bisphosphatase in crude extracts was found to be independent of the stage of the life cycle of the bacterium or of the nature of the carbon-energy source supporting growth. Immunoprecipitation studies indicate that no new species of fructose biphosphatase is produced during gluconeogenic growth or sporulation. The enzyme extracted from cells under a variety of physiological conditions exhibited a molecular weight of about 5 times 10-5 as determined by sucrose density centrifugation. Therefore, it is proposed that a single constitutively synthesized fructose bisphosphatase is present in B. licheniformis. Measurements of the intracellular level of fructose 1,6-bisphosphate indicate that the variation in the level of substrate throughout growth (1 mM) and sporulation (0.3 mM) does not regulate the in vivo activity of this enzyme, since the Km of the enzyme for fructose 1,6-bisphosphate is approximately 10-fold lower than the lowest in vivo concentration of substrate. P-enolpyruvate is proposed as the major regulator of fructose bisphosphatase activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号