首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Burkholderia cepacia has become a serious source of infection in patients with cystic fibrosis. Antibiotic therapy is difficult as the bacteria are intrinsically resistant to most antibiotics. The present study compared the antibody response by immunoblot of 50 negative control sera, 22 patients with cystic fibrosis and no evidence of B. cepacia , 9 clinically well patients with cystic fibrosis colonised by B. cepacia and 5 patients with cystic fibrosis and deteriorating or fatal B. cepacia infection. Nineteen antigenic bands varying in apparent molecular weights from 19 to 170 kDa were identified. Two bands at 19 and 21 kDa were only present when the organism was grown in an iron-deficient medium. The band at 30 kDa was identified as a porin and the possession of IgG antibody carried a statistically significant ( P = 0.00003) better prognosis. This antigen was thus a potential target for immunotherapy.  相似文献   

2.
Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.  相似文献   

3.
Abstract Burkholderia cepacia has emerged as an important multiresistant pathogen in cystic fibrosis (CF), associated in 20% of colonised patients with a rapid and fatal decline in lung function. Although knowledge of B. cepacia epidemiology has improved, the mechanisms involved in pathogenesis remain obscure. In this study, B. cepacia lipopolysaccharide (LPS) was assessed for endotoxic potential and the capacity to induce tumour necrosis factor (TNF). LPS preparations from clinical and environmental isolates of B. cepacia and from the closely related species Burkholderia gladioli exhibited a higher endotoxic activity and more pronounced cytokine response in vitro compared to preparations from the major CF pathogen Pseudomonas aeruginosa . This study may help to explain the vicious host immune response observed during pulmonary exacerbations in CF patients colonised by B. cepacia and lead to therapeutic advances in clinical management.  相似文献   

4.
Pseudomonas aeruginosa and species of the Burkholderia cepacia complex are the primary bacterial pathogens contributing to lung disease in patients with cystic fibrosis. Quorum sensing systems using N-acyl homoserine lactone (AHL) signal molecules are involved in the regulation of a number of virulence factors in these species. Extracts of mucopurulent respiratory secretions from 13 cystic fibrosis patients infected with P. aeruginosa and/or strains of the B. cepacia complex were fractionated using reverse-phase fast pressure liquid chromatography and analyzed for the presence of AHLs using a traI-luxCDABE-based reporter that responds to AHLs with acyl chains ranging between 4 and 12 carbons. Using this assay system, a broad range of AHLs were detected and identified despite being present at low concentrations in limited sample volumes. N-(3-oxo-dodecanoyl)-l-homoserine lactone, N-(3-oxo-decanoyl)-l-homoserine lactone and N-octanoyl-l-homoserine lactone (OHL) were the AHLs most frequently identified. OHL and N-decanoyl-l-homoserine lactone were detected in nanomolar concentrations compared to picomolar amounts of the 3-oxo-derivatives of the AHLs identified.  相似文献   

5.
The aim of the present study was to determine the source of nosocomial outbreak due to Burkholderia cepacia by molecular techniques. A total of 11 B. cepacia strains were isolated; nine from blood and one from sputum of patients without cystic fibrosis, and one from reverse osmosis water at a local hospital in Guangzhou, China. Analyses of 11 strains by the Sau-PCR assay and pulsed-field gel electrophoresis revealed that nine strains obtained from the blood of outpatients in a hemodialysis unit and one strain from reverse osmosis water had identical DNA profiles, indicating that the reverse osmosis water supply could be a source of infection.  相似文献   

6.
The Burkholderia cepacia complex (BCC) comprises a group of bacteria associated with opportunistic infections, especially in cystic fibrosis patients. B. cenocepacia J2315, of the transmissible ET12 lineage, contains a type III secretion (TTS) gene cluster implicated in pathogenicity. PCR and hybridisation assays indicate that the TTS gene cluster is present in all members of the BCC except B. cepacia (formerly genomovar I). The TTS gene clusters of B. cenocepacia J2315 and B. multivorans are similar in organisation but have variable levels of gene identity. Nucleotide sequence data obtained for the equivalent region of the B. cepacia genome indicate the absence of TTS structural genes due to a rearrangement likely to involve more than one step.  相似文献   

7.
The taxonomic status of five root nodule isolates from tropical legumes was determined using a polyphasic taxonomic approach. Two isolates were identified as B. caribensis, an organism originally isolated from soil in Martinique (the French West Indies). One isolate was identified as Burkholderia cepacia genomovar VI, a B. cepacia complex genomovar thus far only isolated from sputum of cystic fibrosis patients. The remaining two isolates were identified as novel Burkholderia species for which we propose the names Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov. The type strains are LMG 21444T and LMG 21445T, respectively.  相似文献   

8.
The production of exopolysaccharides (EPSs) by a mucoid clinical isolate of Burkholderia cepacia involved in infections in cystic fibrosis patients, was studied. Depending on the growth conditions, this strain was able to produce two different EPS, namely PS-I and PS-II, either alone or together. PS-I is composed of equimolar amounts of glucose and galactose with pyruvate as substituent, and was produced on all media tested. PS-II is constituted of rhamnose, mannose, galactose, glucose and glucuronic acid in the ratio 1:1:3:1:1, with acetate as substituent, and was produced on either complex or minimal media with high-salt concentrations (0.3 or 0.5 M NaCl). Although this behavior is strain-specific, and not cepacia-specific, the stimulation of production of PS-II in conditions that mimic those encountered by B. cepacia in the respiratory track of cystic fibrosis patients, suggests a putative role of this EPS in a pathologic context.  相似文献   

9.
The purpose of this study was to develop a novel strategy for the isolation and identification of Burkholderia cepacia complex bacteria from the home environment of cystic fibrosis (CF) patients. Water and soil samples were enriched in a broth containing 0.1% l-arabinose, 0.1% l-threonine, and a mixture of selective agents including 1 microgml(-1) C-390, 600U ml(-1) polymyxin B sulfate, 10 microgml(-1) gentamycin, 2 microgml(-1) vancomycin and 10 microgml(-1) cycloheximide. On selective media (consisting of the same components as above plus 1.8% agar), several dilutions of the enrichment broth were inoculated and incubated for 5 days at 28 degrees C. Isolates with different randomly amplified polymorphic DNA patterns were inoculated in Stewart's medium. Putative B. cepacia complex bacteria were confirmed by means of recA PCR and further identified by HaeIII-recA restriction fragment length polymorphism analysis. Our results suggest that these organisms may be more widespread in the home environment than previously assumed and that plant associated soil and pond water may be reservoirs of B. cepacia complex infection in CF patients.  相似文献   

10.
Abstract Burkholderia cepacia (Pseudomonas cepacia) is now recognised as an important pathogen in cystic fibrosis patients, and several reports have suggested that sputum-culture-proven colonisation occurs despite the presence of specific antibody. In an attempt to establish the use of antibody studies as diagnostic and prognostic indicators of B. cepacia infection, we have examined the IgG response to B. cepacia outer membrane proteins and lipopolysaccharide in patients also colonised with P. aeruginosa . The B. cepacia strains were grown in a modified iron-depleted chemically defined medium and outer membrane components examined by SDS-PAGE and immunoblotting. IgG antibodies were detected against B. cepacia outer membrane antigens, which were not diminished by extensive preadsorption with P. aeruginosa . The response to B. cepacia O-antigen could be readily removed by adsorption of serum either with B. cepacia whole cells or purified LPS, whereas we were unable to adsorb anti-outer membrane protein antibodies using B. cepacia whole cells. The inability to adsorb anti-outer membrane protein antibodies using B. cepacia whole cells maybe due to non-exposed surface epitopes. Several B. cepacia sputum-culture negative patients colonised with P. aeruginosa had antibodies directed against B. cepacia outer membrane protein. This study suggests that there is a specific anti- B. cepacia LPS IgG response, which is not due to antibodies cross-reactive with P. aeruginosa . Our studies indicate that much of the B. cepacia anti-outer membrane protein response is specific and not attributable to reactivity against co-migrating LPS.  相似文献   

11.
Burkholderia cepacia causes pulmonary infection with high mortality in cystic fibrosis (CF) patients which is likely to involve interaction with respiratory epithelium. In this study the pro-inflammatory properties of B. cepacia were examined using a range of respiratory epithelial cell lines. B. cepacia and cell-free culture supernatants were used to stimulate cell lines with (SigmaCFTE29o- and IB3) and without (A549) the CF transmembrane conductance regulator mutation (CFTR), together with corrected cell lines (C38 and S9). Interleukin (IL)-6 and IL-8, but not GM-CSF or IL-1beta, were released from all the cell lines whereas PGE(2) (prostaglandin E(2)) was released from the A549, IB3 and S9 cell lines only. Nuclear factor (NF)-kappaB activation preceded cytokine release and suppression of NF-kappaB activity diminished cytokine release. These studies indicated that B. cepacia secretory products are potent pro-inflammatory agents for respiratory epithelium and suggest functional CFTR is not required for cytokine or prostanoid responses.  相似文献   

12.
Susceptibility of multiresistant strains of Burkholderia cepacia to honey   总被引:2,自引:0,他引:2  
Twenty strains of Burkholderia cepacia, isolated principally from the sputum of cystic fibrosis patients, were tested for their susceptibility to eight antibiotics with a modified Kirby-Bauer Disc diffusion technique. All strains exhibited multiple but not identical patterns of antibiotic resistance. The sensitivity of all strains to honey was assessed with an agar dilution method. All strains exhibited susceptibility to concentrations of honey below 6% (v/v). This suggests that honey may have a potential role in the clinical management of B. cepacia infections.  相似文献   

13.
Bacteria of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that can cause serious infections in lungs of cystic fibrosis patients. The Bcc comprises at least nine species that have been discriminated by a polyphasic taxonomic approach. In this study, we focused on the gyrB gene, universally distributed among bacteria, as a new target gene to discriminate among the Bcc species. New PCR primers were designed to amplify a gyrB DNA fragment of about 1900 bp from 76 strains representative of all Bcc species. Nucleotide sequences of PCR products were determined and showed more than 400 polymorphic sites with high sequence similarity values from most isolates of the same species. Phylogenetic tree analysis revealed that most of the 76 gyrB sequences grouped, forming clusters, each corresponding to a given Bcc species.  相似文献   

14.
Eleven strains of Burkholderia cepacia were isolated directly from clinical specimens: 10 from sputum of cystic fibrosis patients, and one from a vaginal swab. They were biochemically identified using API20NE and confirmed by a PCR-based assay. The genomovar characterisation obtained by specific PCR amplification revealed seven strains belonging to genomovar I, three belonging to genomovar IIIA and one belonging to genomovar IV. All isolates were also typed by ribotyping and random amplification of polymorphic DNA analysis. Some of the characterised strains were examined for the ability to produce exopolysaccharides, with the aim of correlating the genomovar with the exopolysaccharide structure. The polysaccharides were analysed by means of methylation analysis and 1H-NMR spectroscopy in order to determine structural similarities. It was shown that different strains are capable of producing chemically different polysaccharides.  相似文献   

15.
Burkholderia cepacia, a Gram-negative bacterium ubiquitous in the environment, is a plant pathogen causing soft rot of onions. This microorganism has recently emerged as a life-threatening multiresistant pathogen in cystic fibrosis patients. An important virulence factor of B. cepacia is the lipopolysaccharide (LPS) fraction. Clinical isolates and environmental strains possess LPS of high inflammatory nature, which induces a high level production of cytokines. For the first time, the complete structure of the lipid A components isolated from the lipopolysaccharide fraction of a clinical strain of B. cepacia is described. The structural studies carried out by selective chemical degradations, MS, and NMR spectroscopy revealed multiple species differing in the acylation and in the phosphorylation patterns. The highest mass species was identified as a penta-acylated tetrasaccharide backbone containing two phosphoryl-arabinosamine residues in addition to the archetypal glucosamine disaccharide [Arap4N-l-beta-1-P-4-beta-D-GlcpN-(1-6)-alpha-D-GlcpN-1-P-1-beta-L-Arap4N]. Lipid A fatty acids substitution was also deduced, with two 3-hydroxytetradecanoic acids 14:0 (3-OH) in ester linkage, and two 3-hydroxyhexadecanoic acids 16:0 (3-OH) in amide linkage, one of which was substituted by a secondary 14:0 residue at its C-3. Other lipid A species present in the mixture and exhibiting lower molecular weight lacked one or both beta-L-Arap4N residues.  相似文献   

16.
Incidence of the cblA major subunit pilin gene amongst Burkholderia species   总被引:1,自引:0,他引:1  
PCR-amplification has been used to screen 75 isolates of the Burkholderia cepacia complex for the cblA pilin gene. PCR-amplified products of the correct size (664 bp) were cloned and sequenced and the sequences compared. Apart from in the control, epidemic cystic fibrosis (CF)-associated B. cepacia lineage we also identified, for the first time, cblA genes in a unique, non-CF clinical isolate from France and a plant (onion) pathogenic isolate from Italy. The sequence of the cblA gene amplified from the clinical isolate was more diverged from the epidemic lineage than that amplified from the onion pathogenic isolate.  相似文献   

17.
Type 1 and type 2 responses to Leishmania major   总被引:8,自引:0,他引:8  
Pseudomonas aeruginosa and Burkholderia cepacia cause destructive lung disease in cystic fibrosis (CF) patients. Both pathogens employ 'quorum sensing', i.e. cell-to-cell communication, via diffusible N-acyl-L-homoserine lactone (AHL) signal molecules, to regulate the production of a number of virulence determinants in vitro. However, to date, evidence that quorum sensing systems are functional and play a role in vivo is lacking. This study presents the first direct evidence for the presence of AHLs in CF sputum. A total of 42 samples from 25 CF patients were analysed using lux-based Escherichia coli AHL biosensors. AHLs were detected in sputum from patients colonised by P. aeruginosa or B. cepacia but not Staphylococcus aureus. Furthermore, using liquid chromatography-mass spectrometry and thin layer chromatography, we confirmed the presence of N-hexanoylhomoserine lactone and N-(3-oxododecanoyl)homoserine lactone respectively in sputum samples from patients colonised by P. aeruginosa.  相似文献   

18.
The Burkholderia cepacia complex comprises at least nine phylogenetically related genomic species (genomovars) which cause life-threatening infection in immunocompromised humans, particularly individuals with cystic fibrosis or chronic granulomatous disease. Prior to recognition that 'B. cepacia' comprise multiple species, in vitro studies revealed that the lipopolysaccharide (LPS) of these Gram-negative bacteria is strongly endotoxic. In this study, we used 117 B. cepacia complex isolates to determine if there is a correlation between O-antigen serotype and genomovar status. Isolates were also tested for their ability to act as bacterial hosts for the LPS-binding bacteriophages NS1 and NS2. The absence of genomovar II (Burkholderia multivorans) in 'historical B. cepacia' isolates was notable. Neither O-serotype nor phage susceptibility correlated with genomovar status. We conclude that variability in LPS may contribute to the success of these highly adaptable bacteria as human pathogens.  相似文献   

19.
Burkholderia cepacia complex strains are genetically related but phenotypically diverse organisms that are important opportunistic pathogens in patients with cystic fibrosis (CF,) as well as pathogens of onion and banana, colonizers of the rhizospheres of many plant species, and common inhabitants of bulk soil. Genotypic identification and pathogenicity characterization were performed on B. cepacia complex isolates from the rhizosphere of onion and organic soils in Michigan. A total of 3,798 putative B. cepacia complex isolates were recovered on Pseudomonas cepacia azelaic acid tryptamine and trypan blue tetracycline semiselective media during the 2004 growing season from six commercial onion fields located in two counties in Michigan. Putative B. cepacia complex isolates were identified by hybridization to a 16S rRNA gene probe, followed by duplex PCR using primers targeted to the 16S rRNA gene and recA sequences and restriction fragment length polymorphism analysis of the recA sequence. A total of 1,290 isolates, 980 rhizosphere and 310 soil isolates, were assigned to the species B. cepacia (160), B. cenocepacia (480), B. ambifaria (623), and B. pyrrocinia (27). The majority of isolates identified as B. cepacia (85%), B. cenocepacia (90%), and B. ambifaria (76%) were pathogenic in a detached onion bulb scale assay and caused symptoms of water soaking, maceration, and/or necrosis. A phylogenetic analysis of recA sequences from representative B. cepacia complex type and panel strains, along with isolates collected in this study, revealed that the B. cenocepacia isolates associated with onion grouped within the III-B lineage and that some strains were closely related to strain AU1054, which was isolated from a CF patient. This study revealed that multiple B. cepacia complex species colonize the onion rhizosphere and have the potential to cause sour skin rot disease of onion. In addition, the onion rhizosphere is a natural habitat and a potential environmental source of B. cenocepacia.  相似文献   

20.
AIMS: To study the genotypic identification and characterization of the 119 Burkholderia cepacia complex (Bcc) strains recovered from clinical and environmental sources in Japan and Thailand. METHODS AND RESULTS: Based on the results of analysis by 16S rDNA RFLP generated after digestion with DdeI, the Bcc strains were differentiated into two patterns: pattern 1 (including Burkholderia vietnamiensis) and pattern 2 (including B. cepacia genomovar I, Burkholderia cenocepacia and Burkholderia stabilis). All strains belonged to pattern 2 except for one strain. In the RFLP analysis of the recA gene using HaeIII, strains were separated into eight patterns designated as A, D, E, G, H, I, J and K, of which pattern K was new. Burkholderia cepacia epidemic strain marker (BCESM) encoded by esmR [corrected] and the pyrrolnitrin biosynthetic locus encoded by prnC were present in 22 strains (18%) and 88 strains (74%) from all sources, respectively. All esmR-positive [corrected] strains belonged to B. cenocepacia, whereas most prnC-positive strains belonged to B. cepacia genomovar I. CONCLUSIONS: Strains derived from clinical sources were assigned to B. cepacia genomovar I, B. cenocepacia, B. stabilis and B. vietnamiensis. The majority of Bcc strains from environmental sources (77 of a total 95 strains) belonged to B. cepacia genomovar I, whereas the rest belonged to B. cenocepacia. On the basis of genomovar-specific PCR and prnC RFLP analysis, strains belonging to recA pattern K were identified as B. cepacia genomovar I. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides the genotypic identification of a collection of the Bcc strains from Japan and Thailand. RFLP analysis of the prnC gene promises to be a useful method for differentiating Burkholderia pyrrocinia from B. cepacia genomovar I strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号