首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Legionella pneumophila is a facultative intracellular pathogen which readily grows in human and guinea pig macrophages and in peritoneal exudate macrophages from A/J mice. Macrophage cultures capable of supporting the growth of Legionella can be used to test the potency of biologically active substances suspected of modulating host mechanisms of resistance to infection. Accordingly, this model was used to evaluate the influence of delta-9-tetrahydro-cannabinol (THC) on macrophage resistance to infection with an intracellular pathogen. Pretreatment of the macrophages with THC in the concentration range of 2.5 micrograms/ml (8 microM) to 5.0 micrograms/ml (16 microM) had little if any effect on the ability of the macrophages to either ingest or support the replication of Legionella. However, THC treatment of cells following Legionella infection resulted in increased numbers of bacteria recoverable from the macrophage cultures. Stimulation of the macrophage cultures with the activating agent lipopolysaccharide (LPS) was effective in reducing the ability of Legionella to grow in the cells. However, treatment of the LPS activated macrophages with THC resulted in greater growth of the Legionella in the cultures, indicating that the drug abolished the LPS induced enhanced resistance. These results demonstrate that THC treatment of macrophages following infection rather than before infection with Legionella promotes the replication of the bacteria within the macrophages. In addition, drug treatment suppresses the growth restricting potential of macrophages activated by LPS.  相似文献   

2.
Legionella pneumophila is an ubiquitous opportunistic intracellular pathogen that replicates readily in thioglycollate-elicited peritoneal macrophages from genetically susceptible A/J mice. Treatment of macrophage cultures in vitro with tumor necrosis factor-alpha (TNF-alpha) induced resistance of the macrophages to infection by Legionella as compared with control macrophages treated with medium alone. Addition of small amounts of monoclonal antibody to TNF-alpha restored susceptibility of the macrophages. Furthermore, antibody to the proinflammatory cytokine interleukin-1 (IL-1) alpha/beta increased resistance, but recombinant IL-1 had little effect. Such decreased susceptibility to Legionella growth in anti-IL-1 antibody-treated cultures corresponded with enhanced levels of TNF-alpha in the supernatants of the treated cells. An antibody to another proinflammatory cytokine with known immunoregulatory properties (i.e., IL-6) had little or no effect on the ability of the macrophages to be infected by Legionella and, furthermore, treatment with recombinant IL-6, similar to recombinant IL-1, did not modify the ability of the cells to be infected in vitro. These results indicate that TNF-alpha is important in controlling L. pneumophila replication, and IL-1 can regulate TNF-alpha levels, affecting susceptibility of macrophages to infection with an intracellular opportunistic pathogen like Legionella.  相似文献   

3.
Macrophages from A/J mice are permissive for growth of Legionella pneumophila, an intracellular opportunistic pathogen that grows preferentially in macrophages. Macrophages from other mouse strains are highly resistant to growth of Legionella. In the present study, it was found that macrophages from A/J mice are readily activated by pretreatment with lipopolysaccharide (LPS), so that the cells do not permit Legionella to replicate in vitro, as occurs when untreated macrophages from A/J mice are cultured with these organisms for 48 hr. The augmentation of Legionella growth inhibition by LPS-activated macrophages from nonpermissive BDF1 mice also occurred. After in vitro infection, there was a 1000-fold increase in the number of Legionella in A/J macrophages and approximately a 10-fold increase in BDF1 macrophages, but LPS treatment of macrophages from either strain resulted in marked growth restrictions. This suppression was both dose dependent as well as dependent upon the time of addition of the LPS to the macrophages. Furthermore, the lipid A component of LPS was found to be as effective as the intact LPS in activating macrophages to inhibit the intracellular growth of Legionella. Further studies concerning the mechanisms involved are clearly warranted and in progress.  相似文献   

4.
Legionella pneumophila is an intracellular pathogen whose replication in macrophages is mainly controlled by IFN-gamma. Freshly isolated peritoneal macrophages elicited in vivo with thioglycolate (TG) from A/J mice are highly permissive to L. pneumophila growth in vitro, while TG-elicited macrophages from CD1 mice are resistant. In this study, we show that when CD1 TG-macrophages are cultured for 7 days, they become permissive to Legionella infection. We demonstrate that treatment with type I IFN (IFN-alphabeta) totally inhibits the growth of L. pneumophila in both freshly isolated A/J and in vitro-aged CD1 TG-macrophages. IFN-alphabeta protective effect on permissive macrophages was comparable to that induced by IFN-gamma. Even low doses of either IFN-alpha or IFN-beta alone were effective in inhibiting L. pneumophila multiplication in macrophage cultures. Notably, treatment of resistant, freshly isolated CD1 TG-macrophages with Ab to mouse IFN-alphabeta significantly enhanced their susceptibility to Legionella infection in vitro, thus implying a role of endogenous IFN-alphabeta in mediating the natural resistance of macrophages to L. pneumophila infection. Finally, addition of anti-IFN-gamma-neutralizing Ab did not restore Legionella growth in IFN-alpha- or IFN-beta-treated A/J or CD1 permissive macrophages, indicating that IFN-alphabeta effect was not mediated by IFN-gamma. This observation was further confirmed by the finding that IFN-alphabeta was effective in inhibiting L. pneumophila replication in macrophages from IFN-gamma receptor-deficient mice. Taken together, our results provide the first evidence for a role of IFN-alphabeta in the control of L. pneumophila infection in mouse models of susceptible macrophages and suggest the existence of different pathways for the control of intracellular bacteria in macrophages.  相似文献   

5.
Growth of the intracellular opportunistic bacterium Legionella pneumophila in macrophages from A/J mice is a vigorous as growth in macrophages from susceptible guinea pigs and human monocytes, whereas growth is inhibited in macrophages from other mouse strains, such as nonpermissive BALB/c mice. Permissiveness versus nonpermissiveness of macrophages from A/J versus BALB/c mice appeared to be controlled by a genetic mechanism dependent upon a single gene or a closely clustered family of genes. Susceptibility versus resistance of macrophages from F1 offspring of these two strains of mice and macrophages from backcrossed mice prepared from F1 hybrids and the original parental strain showed a segregation of permissiveness for growth of Legionella in vitro, consistent with genetic control.  相似文献   

6.
7.
Similar to guinea pig macrophages and human monocytes, macrophages from the peritoneal cavity of thioglycolate pretreated A/J mice are permissive for growth of Legionella pneumophila. In contrast, macrophages from BDF1 mice are not permissive for L. pneumophila. Lymphocytes from A/J and BDF1 mice proliferated in response to Legionella Ag but guinea pig lymphocytes did not. Also, splenocyte cultures from A/J mice treated with either Con A or Legionella vaccine produced supernatants which induced A/J macrophages to restrict Legionella growth, but guinea pig splenocyte culture supernatants obtained after stimulation with L. pneumophila vaccine did not induce Legionella growth restriction activity by guinea pig macrophages. Murine rIFN-gamma but not rIFN-alpha markedly inhibited growth of Legionella in A/J mouse macrophages and monoclonal anti-IFN-gamma antibody neutralized the anti-Legionella activity of culture supernatants from A/J mouse splenocytes responding to Legionella Ag. From these data, IFN-gamma appears to be an important factor in anti-Legionella activity of Ag-activated mouse splenocyte culture supernatants. Cyclosporin A, when given to either A/J or BDF1 mice, reduced the proliferation responses of splenocytes to T cell mitogens and also decreased the IFN production of A/J spleen cells to Legionella Ag. In addition, drug treatment decreased the resistance of A/J mice to Legionella infection as shown by an increase in the number of viable bacteria in the liver. However, injection of drug treated mice with lymphokine-rich splenocyte culture supernatant reconstituted the resistance of these animals. These results suggest an important role for lymphocyte activation and lymphokine production in the resistance of A/J mice to Legionella infection. The greater resistance of BDF1 mice, however, may result from nonpermissive macrophages and responsive lymphocytes. In the case of guinea pigs, susceptibility to Legionella infections may result from both the permissive nature of the macrophages and the relatively unresponsive nature of the lymphocytes in these animals.  相似文献   

8.
Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis ( M.tb ) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show that siderocalin expression is upregulated following M.tb infection of mouse macrophage cell lines and primary murine alveolar macrophages. Furthermore, siderocalin added exogenously as a recombinant protein or overexpressed in the RAW264.7 macrophage cell line inhibited the intracellular growth of the pathogen. A variant form of siderocalin, which is expressed only in the macrophage cytosol, inhibited intracellular M.tb growth as effectively as the normal, secreted form, an observation that provides mechanistic insight into how siderocalin might influence iron acquisition by the bacteria in the phagosome. Our findings are consistent with an important role for siderocalin in protection against M.tb infection and suggest that exogenously administered siderocalin may have therapeutic applications in tuberculosis.  相似文献   

9.
Macrophages from C57BL/6J (B6) mice restrict growth of the intracellular bacterial pathogen Legionella pneumophila. Restriction of bacterial growth requires caspase-1 and the leucine-rich repeat-containing protein Naip5 (Birc1e). We identified mutants of L. pneumophila that evade macrophage innate immunity. All mutants were deficient in expression of flagellin, the primary flagellar subunit, and failed to induce caspase-1-mediated macrophage death. Interestingly, a previously isolated flagellar mutant (fliI) that expresses, but does not assemble, flagellin did not replicate in macrophages, and induced macrophage death. Thus, flagellin itself, not flagella or motility, is required to initiate macrophage innate immunity. Immunity to Legionella did not require MyD88, an essential adaptor for toll-like receptor 5 (TLR5) signaling. Moreover, flagellin of Legionella and Salmonella induced cytotoxicity when delivered to the macrophage cytosol using Escherichia coli as a heterologous host. It thus appears that macrophages sense cytosolic flagellin via a TLR5-independent pathway that leads to rapid caspase-1-dependent cell death and provides defense against intracellular bacterial pathogens.  相似文献   

10.
BACKGROUND: Legionella pneumophila is a gram-negative bacterial pathogen that is the cause of Legionnaires' Disease. Legionella produces disease because it can replicate inside a specialized compartment of host macrophages. Macrophages isolated from various inbred mice exhibit large differences in permissiveness for intracellular replication of Legionella. A locus affecting this host-resistance phenotype, Lgn1, has been mapped to chromosome 13, but the responsible gene has not been identified. RESULTS: Here, we report that Naip5 (also known as Birc1e) influences susceptibility to Legionella. Naip5 encodes a protein that is homologous to plant innate immunity (so-called "resistance") proteins and has been implicated in signaling pathways related to apoptosis regulation. Detailed recombination mapping and analysis of expression implicates Naip5 in the Legionella permissiveness differences among mouse strains. A bacterial artificial chromosome (BAC) transgenic line expressing a nonpermissive allele of Naip5 exhibits a reduction in macrophage Legionella permissiveness. In addition, morpholino-based antisense inhibition of Naip5 causes an increase in the Legionella permissiveness of macrophages. CONCLUSIONS: We conclude that polymorphisms in Naip5 are involved in the permissiveness differences of mouse macrophages for intracellular Legionella replication. We speculate that Naip5 is a functional mammalian homolog of plant "resistance" proteins that monitor for, and initiate host response to, the presence of secreted bacterial virulence proteins.  相似文献   

11.
《Autophagy》2013,9(4):484-493
Legionella pneumophila Philadelphia-1 (Lp-1) can grow intracellularly in A/J mouse peritoneal macrophages (A/J Mφ). We previously reported that 2-deoxy-D-glucose (2dG), when added in macrophage culture media, inhibited the intracellular multiplication of Lp-1 in A/J Mφ. We found that 1mM of 2dG caused LC3-II-conversion that reflects an induction of autophagy and that 1 and 10mM of 2dG induced apoptosis associated with caspase-4 activation. We therefore investigated whether 2dG-induced autophagy or apoptosis suppresses the replication of Lp-1 in 2dG-treated A/J Mφ. When autophagy-related 5 (Atg5) was knocked down by RNA interference, the Atg5-siRNA-transfected cells revealed an enhanced replication of Lp-1 in A/J Mφ compared with the nontargetting siRNA-transfected cells. However, caspase-4 inhibitor did not affect the 2dG-induced inhibition of intracellular multiplication of Lp-1 in A/J Mφ. These findings suggested that autophagy, not apoptosis, suppressed the intracellular growth of Lp-1 in A/J Mφ when 1 or 10 mM of 2dG were added to the culture media.  相似文献   

12.
Legionella pneumophila is the etiologic agent of Legionnaires' disease. This bacterium contains a single monopolar flagellum, of which the FlaA subunit is a major protein constituent. The murine macrophage resistance against this bacterium is controlled by the Birc1e/Naip5 gene, which belongs to the NOD family. We evaluated the intracellular growth of the flaA mutant bacteria as well as another aflagellated fliA mutant, within bone marrow-derived macrophages from mice with an intact (C57BL/6, BALB/c) or mutated (A/J) Birc1e/Naip5 gene. The flaA mutant L. pneumophila multiplied within C57BL/6 and BALB/c macrophages while the wild-type strain did not. Cell viability was not impaired until 3 days after infection when the flaA mutant bacteria replicated 10(2-3)-fold in macrophages, implying that L. pneumophila inhibited host cell death during the early phase of intracellular replication. The addition of recombinant interferon-gamma (IFN-gamma) to the infected macrophages restricted replication of the flaA mutant within macrophages; these treated cells also showed enhanced nitric oxide production, although inhibition of nitric oxide production did not affect the IFN-gamma induced inhibition of Legionella replication. These findings suggested that IFN-gamma activated macrophages to restrict the intracellular growth of the L. pneumophila flaA mutant by a NO independent pathway.  相似文献   

13.
Listeria monocytogenes is an opportunistic intracellular pathogen capable of growth that requires iron for growth within phagocytic cells and virulence expression. In the presence of an appropriate concentration tropolone, an iron-chelating agent, growth of L. monocytogenes is completely inhibited. However, this inhibition can be relieved by addition of dopamine, norepinephrine, or ferric citrate. By selection on streptonigrin medium supplemented with tropolone and norepinephrine, we have obtained two spontaneous mutants, Lm-8 and Lm-15, with the same iron dependence but lower iron dependence than the wild-type Lm-B38. The association between iron requirement and virulence of the two mutants and the wild type was studied in the J774 macrophage cell line. One hour after phagocytosis by the J774 macrophage cell line, the two mutants and the parental strain displayed no difference in the number of phagocytosed bacteria. Twenty-four hours after phagocytosis, the number of bacteria within the surviving macrophages was identical for the wild strain and the two clones. However, only 40% of macrophage cells infected with Lm-8 and 90% of those infected with Lm-15 were alive after 24 h in comparison with macrophage cells infected with the parental strain Lm-B38. These data demonstrate that there is no direct correlation between iron requirement and virulence of L. monocytogenes in the J774 macrophage cell line.  相似文献   

14.
After ingestion by macrophages, Legionella pneumophila enter spacious vacuoles that are quickly enveloped by endoplasmic reticulum (ER), then slowly transferred to lysosomes. Here we demonstrate that the macrophage autophagy machinery recognizes the pathogen phagosome as cargo for lysosome delivery. The autophagy conjugation enzyme Atg7 immediately translocated to phagosomes harbouring virulent Legionella. Subsequently, Atg8, a second autophagy enzyme, and monodansyl-cadaverine (MDC), a dye that accumulates in acidic autophagosomes, decorated the pathogen vacuoles. The autophagy machinery responded to 10-30 kDa species released into culture supernatants by Type IV secretion-competent Legionella, as judged by the macrophages' processing of Atg8 and formation of vacuoles that sequentially acquired Atg7, Atg8 and MDC. When compared with autophagosomes stimulated by rapamycin, Legionella vacuoles acquired Atg7, Atg8 and MDC more slowly, and Atg8 processing was also delayed. Moreover, compared with autophagosomes of Legionella-permissive naip5 mutant A/J macrophages, those of resistant C57BL/6 J macrophages matured quickly, preventing efficient Legionella replication. Accordingly, we discuss a model in which macrophages elevate autophagy as a barrier to infection, a decision influenced by regulatory interactions between Naip proteins and caspases.  相似文献   

15.
The opportunistic pathogen Legionella pneumophila, the etiologic agent of Legionnaires disease, is able to invade and multiply intracellularly in human macrophages. This process is controlled by several bacterial virulence factors. As recently demonstrated, one of these virulence factors, the macrophage infectivity potentiator (Mip) protein, is important for invasion and proper intracellular establishment of L. pneumophila in macrophages and protozoa. Knockout mutants devoid of a functional mip-gene enter host cells much less effectively but intracellular replication is not affected. Using a P(mip)-green fluorescent protein reporter construct in L. pneumophila substrain Corby, P(mip) was recently shown to be constitutively active in replicating bacteria. A stringent regulation during the infection process could not be observed, neither in intracellular nor in BYE broth-grown bacteria. For enhanced temporal and quantitative resolution, we examined the activity of mip on RNA level in order to detect short transient regulatory events. Our results show that P(mip) of L. pneumophila is temporarily repressed directly after invasion of the monocytic human cell line MonoMac 6 and regains activity after 24 h of intracellular replication.  相似文献   

16.
Incubation of normal mouse peritoneal cells consisting of over 90% phagocytizing macrophages with delta 9-tetrahydrocannabinol (THC) resulted in a inhibition of phagocytic function. The THC in a dose-related manner suppressed the percentage of macrophages per culture which ingested yeast and the average number of yeast particles ingested by the phagocytizing macrophages. The vehicle used to suspend the THC in vitro, i.e., DMSO, had no detectable effect on macrophage function. Suppression of phagocytosis with no effects on viability or cell number occurred with doses of 10 micrograms or less THC per milliliter culture medium. Measurable suppression also occurred after 24- to 48-hr treatment of the macrophages with the THC. This compound had little if any detectable effect on phagocytosis when added directly to the cultures shortly before testing for phagocytosis. Further studies concerning the effects of THC on macrophage function appear warranted.  相似文献   

17.
Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)-alpha or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF-alpha and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways.  相似文献   

18.
Similar to Ipaf and caspase-1, the Nod-like receptor protein Naip5 restricts intracellular proliferation of Legionella pneumophila, the causative agent of a severe form of pneumonia known as Legionnaires' disease. Thus, Naip5 has been suggested to regulate Legionella replication inside macrophages through the activation of caspase-1. In this study, we show that cytosolic delivery of recombinant flagellin activated caspase-1 in A/J macrophages carrying a mutant Naip5 allele, and in C57BL/6 (B6) macrophages congenic for the mutant Naip5 allele (B6-Naip5(A/J)), but not in Ipaf(-/-) cells. In line with these results, A/J and B6-Naip5(A/J) macrophages induced high levels of caspase-1 activation and IL-1beta secretion when infected with Legionella. In addition, transgenic expression of a functional Naip5 allele in A/J macrophages did not alter Legionella-induced caspase-1 activation and IL-1beta secretion. Notably, defective Naip5 signaling renders B6-Naip5(A/J) macrophages permissive for Legionella proliferation despite normal caspase-1 activation. These results indicate that the restriction of intracellular Legionella replication is more complex than previously appreciated and requires both Ipaf-dependent caspase-1 activation as well as functional Naip5 signaling.  相似文献   

19.
Legionella pneumophila is an intracellular bacterium that causes an acute form of pneumonia called Legionnaires' disease. After infection of human macrophages, the Legionella-containing phagosome (LCP) avoids fusion with the lysosome allowing intracellular replication of the bacterium. In macrophages derived from most mouse strains, the LCP is delivered to the lysosome resulting in Legionella degradation and restricted bacterial growth. Mouse macrophages lacking the NLR protein Ipaf or its downstream effector caspase-1 are permissive to intracellular Legionella replication. However, the mechanism by which Ipaf restricts Legionella replication is not well understood. Here we demonstrate that the presence of flagellin and a competent type IV secretion system are critical for Legionella to activate caspase-1 in macrophages. Activation of caspase-1 in response to Legionella infection also required host Ipaf, but not TLR5. In the absence of Ipaf or caspase-1 activation, the LCP acquired endoplasmic reticulum-derived vesicles, avoided fusion with the lysosome, and allowed Legionella replication. Accordingly a Legionella mutant lacking flagellin did not activate caspase-1, avoided degradation, and replicated in wild-type macrophages. The regulation of phagosome maturation by Ipaf occurred within 2 h after infection and was independent of macrophage cell death. In vivo studies confirmed that flagellin and Ipaf play an important role in the control of Legionella clearance. These results reveal that Ipaf restricts Legionella replication through the regulation of phagosome maturation, providing a novel function for NLR proteins in host defense against an intracellular bacterium.  相似文献   

20.
The Gram-negative bacterium Legionella pneumophila is a parasite of eukaryotic cells. It has evolved to survive and replicate in a wide range of protozoan hosts and can also infect human alveolar macrophages as an opportunistic pathogen. Crucially for the infection process, L. pneumophila uses a type IV secretion system called Dot/Icm to translocate bacterial proteins into host cells. In recent years a large number of Dot/Icm-translocated proteins have been identified. The study of these proteins, referred to as effectors, is providing valuable insight into the mechanism by which an intracellular pathogen can manipulate eukaryotic cellular processes to traffic and replicate in host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号