首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the complete DNA sequence of the Klebsiella pneumoniae nifH gene, the gene which codes for component 2 (Fe protein or nitrogenase reductase) of the nitrogenase enzyme complex. The amino acid sequence of the K. pneumoniae nitrogenase Fe protein is deduced from the DNA sequence. The K. pneumoniae Fe protein contains 292 amino acids, has a Mr = 31,753, and contains 9 cysteine residues. We compare the amino acid sequence of the K. pneumoniae protein with available amino acid sequence data on nitrogenase Fe proteins from two other species, Clostridium pasteurianum and Azotobacter vinelandii. The C. pasteurianum Fe protein, for which the complete sequence is known, shows 67% homology with the K. pneumoniae Fe protein. Extensive regions of strong conservation (90-95%) are found, while other regions show relatively poor conservation (30-35%). It is suggested that these strongly conserved regions are of special importance to the function of this enzyme, and the findings are discussed in the light of evolutionary theories on the origin of nif genes.  相似文献   

2.
3.
4.
5.
The complete nucleotide sequence of the nifD gene encoding the alpha subunit of component I of nitrogenase from Frankia alni strain ArI3 was determined. The coding region is 1,458 bp in length and encodes a polypeptide of 486 residues with a predicted molecular weight of 53,500. Phylogenetic inferences with 12 complete published nifD sequences were drawn using a variety of approaches. Frankia nifD clusters with proteobacteria rather than with Clostridium pasteurianum, the other Gram-positive bacterium studied. Extant eubacterial nif genes seem to have at least three distinct evolutionary origins as a result of ancient gene duplications. Within the Gram-positive bacterial phylum, functional nif genes descend from different duplicates.  相似文献   

6.
nifD和nifK编码钼铁固氮酶中的钼铁蛋白。为了解发菜nifD和nifK分子信息及对水分胁迫的响应机制,该研究设计了简并性引物克隆发菜nifD和nifK全长,进行原核表达和生物信息学分析,并对不同失水状态下发菜nifD和nifK在转录水平的差异表达和固氮酶活性的变化进行分析。结果表明,发菜nifD和nifK全长分别为1 443 bp和1 536 bp (登陆号为分别为KU886164和KU886165);将nifD和nifK在大肠杆菌中表达,分别获得一个约57 kD和58 kD的外源蛋白;生物信息学分析表明,nifD和nifK核苷酸序列和推译的氨基酸序列均与点形念珠藻(Nostoc punctiforme PCC 73102)高度一致性;nifD和nifK的二级结构主要有α-螺旋、β-折叠、β-转角和随机卷曲。此外,随着藻体含水量的逐渐降低,发菜nifD和nifK在转录水平上的表达量逐渐增加,但固氮酶活性呈现先增加后下降的趋势。研究结果为深入全面研究发菜固氮酶基因结构及其响应水分胁迫的固氮机理及氮代谢途径提供了基础。  相似文献   

7.
8.
Methanosarcina barkeri 227 possesses two clusters of genes potentially encoding nitrogenases. We have previously demonstrated that one cluster, called nif2, is expressed under molybdenum (Mo)-sufficient conditions, and the deduced amino acid sequences for nitrogenase structural genes in that cluster most closely resemble those for the Mo nitrogenase of the gram-positive eubacterium Clostridium pasteurianum. The previously cloned nifH1 from M. barkeri shows phylogenetic relationships with genes encoding components of eubacterial Mo-independent eubacterial alternative nitrogenases and other methanogen nitrogenases. In this study, we cloned and sequenced nifD1 and part of nifK1 from M. barkeri 227. The deduced amino acid sequence encoded by nifD1 from M. barkeri showed great similarity with vnfD gene products from vanadium (V) nitrogenases, with an 80% identity at the amino acid level with the vnfD gene product from Anabaena variabilis. Moreover, there was a small open reading frame located between nifD1 and nifK1 with clear homology to vnfG, a hallmark of eubacterial alternative nitrogenases. Stimulation of diazotrophic growth of M. barkeri 227 by V in the absence of Mo was demonstrated. The unusual complement of nif genes in M. barkeri 227, with one cluster resembling that from a gram-positive eubacterium and the other resembling a eubacterial V nitrogenase gene cluster, suggests horizontal genetic transfer of those genes.  相似文献   

9.
10.
Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster.  相似文献   

11.
The redox state of nitrogenase Fe protein is shown to affect regulation of ADP-ribosylation in Klebsiella pneumoniae strains transformed by plasmids carrying dra genes from Rhodospirillum rubrum. The dra operon encodes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase, enzymes responsible for the reversible inactivation, via ADP-ribosylation, of nitrogenase Fe protein in R. rubrum. In bacteria containing the dra operon in their chromosomes, inactivation occurs in response to energy limitation or nitrogen sufficiency. The dra gene products, expressed at a low level in K. pneumoniae, enable transformants to reversibly ADP-ribosylate nitrogenase Fe protein in response to the presence of fixed nitrogen. The activities of both regulatory enzymes are regulated in vivo as described in R. rubrum. Genetic perturbations of the nitrogenase electron transport chain were found to affect the rate of inactivation of Fe protein. Strains lacking the electron donors to Fe protein (NifF or NifJ) were found to inactivate Fe protein more quickly than a strain with wild-type background. Deletion of nifD, which encodes a subunit of nitrogenase MoFe protein, was found to result in a slower inactivation response. No variation was found in the reactivation responses of these strains. It is concluded that the redox state of the Fe protein contributes to the regulation of the ADP-ribosylation of Fe protein.  相似文献   

12.
Many undomesticated legumes harbor nodule bacteria related to the soybean symbiont Bradyrhizobium elkanii, but little is known about their phylogenetic relationships or geographic distribution. Sequences of ribosomal genes (16S rRNA and partial 23S rRNA) and the nitrogenase alpha-subunit gene (nifD) were analyzed in 22 isolates of this group sampled from diverse legumes in Korea, Japan, the USA, Mexico, Costa Rica and Panama. Some strains from Asia and North America shared identical sequences for both ribosomal genes. However, pairs of strains with closely related nifD sequences were almost never found in different regions. The major exceptions involved North American isolates B. elkanii USDA 76 and USDA 94, which had nifD sequences highly similar to certain Korean strains. However, 16S rRNA sequences of USDA 76 and USDA 94 were closely related to Central American rather than Asian bradyrhizobia, implying that these strains are genetic mosaics combining sequences from distinct ancestral areas. Several other conflicts between rRNA and nifD tree topologies indicated that the genealogical histories of these loci have been influenced by recurrent lateral gene transfer events.  相似文献   

13.
14.
PCR screens for length variation in a 5' portion of 23S ribosomal RNA and in the 3' end of the 16S rRNA-23S rRNA internal transcribed spacer (ITS) region indicated that nodule bacteria from a Mexican population of Lotus oroboides were diverse on a local scale. Three 23S rRNA length variants and five ITS length variants were detected among the 22 isolates. Sequencing of nearly full-length 16S rRNA genes in three isolates indicated that they fell into the genus Mesorhizobium, but comprised two distinct groups. Two isolates were closely related to M. loti LMG 6125T, while the other isolate clustered with an assemblage of Mesorhizobium taxa that included M. amorphae, M. plurifarium and M. huakuii. However, a phylogenetic tree based on 715 bp of the nitrogenase alpha-subunit (nifD) gene was significantly discordant with the relationships inferred from rRNA sequences. Two isolates that were nearly identical for 16S rRNA had nifD genes that varied at 2% of sites, and one of these nifD sequences was identical to that of another isolate with a strongly divergent 16S rRNA gene. A plasmid screen followed by Southern hybridization indicated that only one of these strains harbored a plasmid-borne nifD gene. These results imply that gene transfer events have altered the distribution of nifD sequences among lineages within this natural population of Mesorhizobium strains.  相似文献   

15.
DNA isolated from two diazotrophic methylotrophs, the obligate methanotroph Methylosinus sp. strain 6 and the methanol autotroph Xanthobacter sp. H4-14, hybridized to DNA fragments encoding nitrogen fixation (nif) genes from Klebsiella pneumoniae. This interspecific nif homology was limited to DNA fragments encoding the nitrogenase structural proteins (nifH, nifD, and nifK) and specific methylotroph DNA sequences. The hybridization patterns obtained with the two methylotrophs were dissimilar, indicating that the nif region of methylotrophs is not physically conserved. By using the K. pneumoniae nif structural genes as a probe, a fragment of nif DNA from each methylotroph was cloned and characterized. The DNA fragment from Methylosinus sp. 6 encoded two polypeptides of 57,000 and 34,000 molecular weight.  相似文献   

16.
The nucleotide sequence was determined for part of the Klebsiella pneumoniae nif gene cluster containing the 3' end of the nifD gene and the entire length of the nifK gene (encoding the alpha- and beta-subunits of the nitrogenase MoFe protein respectively), as well as the putative start of the nifY gene, a gene of as yet unknown function. A broad-based comparison of a number of MoFe protein alpha-subunits, beta-subunits and alpha-versus beta-subunits was carried out by the use of a computer program that simultaneously aligns three protein sequences according to the mutation data matrix of Dayhoff. A new kind of quantitative statistical measure of the similarity between the aligned sequences was obtained by calculating and plotting standardized similarity scores for overlapping segments along the aligned proteins. This calculation determines if a test sequence is similar to the consensus sequence of two other proteins that are known to be related to each other. The different beta-subunits compared were found to be significantly similar along most of their sequence, with the exception of two relatively short regions centred around residues 225 and 300, which contain insertions/deletions. The overall pattern of similarity between different alpha-subunits exhibits resemblance to the overall pattern of similarity between different beta-subunits, including regions of low similarity centred around residues 225 and 340. Comparison of alpha-subunits with beta-subunits showed that a region of significant similarity between the two types of subunits was located approximately between residues 120 and 180 in both subunits, but other parts of the proteins were only marginally similar. These results provide insights into likely tertiary structural features of the MoFe protein subunits.  相似文献   

17.
18.
K E Brigle  W E Newton  D R Dean 《Gene》1985,37(1-3):37-44
DNA fragments coding for the structural genes for Azotobacter vinelandii nitrogenase have been isolated and sequenced. These genes, nifH, nifD and nifK, code for the iron (Fe) protein and the alpha and beta subunits of the molybdenum-iron (MoFe) protein, respectively. They are arranged in the order: promoter:nifH:nifD:nifK. There are 129 nucleotides separating nifH and nifD and 101 nucleotides separating nifD and nifK. The amino acid (aa) sequences deduced from the nucleotide sequences are discussed in relation to the prosthetic group-binding regions of the nifHDK-encoded polypeptides.  相似文献   

19.
20.
R L Robson 《FEBS letters》1984,173(2):394-398
Published amino acid sequences for nitrogenase component polypeptides were compared with those of other proteins which also bind adenine nucleotides. Three sequences which might contribute to an adenine nucleotide-binding domain were found for the Fe-protein component of nitrogenase. The beta-subunit of the MoFe-protein (nifK gene product) contains a sequence which is similar to other proteins which exhibit ATPase activity. No similarities were observed for the alpha-subunit of this component. The findings are discussed in relation to the experimental data on adenine nucleotide binding and the proposed role of ATP in the enzyme mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号