首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hauke Holtorf  Klaus Apel 《Planta》1996,199(2):289-295
In etiolated barley (Hordeum vulgare L.) seedlings the light-induced accumulation of chlorophyll is controlled by two light-dependent NADPH-proto-chlorophyllide oxidoreductase (POR; EC 1.6.99.1) enzymes. While the concentration of one of these enzymes (POR A) and its mRNA rapidly decline during illumination, the second POR protein (POR B) and its mRNA remain at an approximately constant level during the transition from dark growth to the light. These results may suggest that only one of the enzymes, POR B, operates throughout the greening process and in light-adapted mature plants while the second enzyme, POR A, is active only in etiolated seedlings at the beginning of illumination. The fate of the two POR proteins and their mRNAs in fully green plants, however, has not been studied yet. In the present work we determined changes in the level of POR A and POR B proteins and mRNAs in green barley plants kept under a diurnal 12 h light/12 h dark cycle. In green barley plants, not only POR B is present but also trace amounts of POR A continue to reappear transiently at the end of a night period and seem to be involved in the synthesis and accumulation of chlorophyll at the beginning of each day.Abbreviations Chl chlorophyll - Chlide chlorophyllide - Lhcb light-harvesting chlorophyll a/b protein - Pchlide protochlorophyllide - POR NADPH-protochlorophyllide oxidoreductase Dedicated to Horst Senger on the occasion of his 65th birthday.We thank Dr. Dieter Rubli for photography and Renate Langjahr for typing. This work was supported by the Swiss National Science Foundation and the ETH-Zürich.  相似文献   

2.
Five popular but iron-inefficient cultivars were crossed with three efficient genotypes and both parents and F1s were evaluated for iron-efficiency in potted calcareous and noncalcareous soil. The iron-efficient genotypes were dark green or green in both noncalcareous and calcareous soils whereas inefficient types were light green to yellow in calcareous soil. The chlorophyll and active iron (Fe2+) concentration of leaves was less in iron-efficient genotypes compared to efficient types in calcareous soil and reduction of both the parameters from noncalcareous to calcareous soil was considerably high in iron-inefficient lines. There was significant correlation between visual scores, chlorophyll and active iron content. There were no differences among F1s for iron chlorosis and they were all iron-inefficient. The frequency of iron-inefficient plants was higher than the efficient plants in all F2 populations. But most of the productive plants came from iron-efficient segregants indicating strong association between iron-efficiency and productivity. Based on the results selection for iron-efficiency in early generations and extensive evaluation for productivity in advanced generations is suggested for developing varieties for cultivation in calcareous soils.  相似文献   

3.
Adventitious shoot primordia were formed on horseradish hairy root cultured in dark. Plantlet formation frequency from the primordia was higher than that from root fragments. Culture for 26 days provided the adventitious shoot primordia, which had the highest potential for plantlet formation (53% explants at 40 days). Benzyladenine supplementation in the dark caused primordium enlargement, but did not increase the number of primordia formed. After adventitious shoot primordia were encapsulated with calcium alginate, kinetin supplementation (2.0–4.0 M) increased the shoot formation frequency (65–80% explants at 20 days) in the light, but also promoted the undesirable formattion of multiple shoots. Supplementation with naphthaleneacetic acid (0.27–5.4 M) in the calcium alginate beads in light enhanced the root emergence from primordia without inhibition of plantlet formation when the encapsulated beads were put on the agar-medium without naphthaleneacetic acid.  相似文献   

4.
Summary Three types of spots can be identified on the leaves of heterozygous light green, Y/y, Glycine max (L.) Merrill: dark green (D) and aurea (A) single spots (resembling the phenotypes of the homozygotes) and double (Db) spots consisting of adjacent D and A tissue. X-irradiation increased the frequency of each type of spot on simple and first compound leaves. The Db spots, indicative of mitotic crossing-over (MCO), increase linearly with increasing dosage. Moisture content of the seeds was independent of the rate of spot increase. At high dosages morphological alterations were observed, including spots on homozygotes, leaf area reduction, smaller seedlings, and abnormal leaf shapes. The frequency of light green spots on normal dark green, Y/Y, seedlings was tabulated and, as with all other spot types, increased with increasing X-ray dosage. Dormant soybean seeds contain leaf primordia of both simple and first compound leaves. Mature simple leaves contained more spots, reflecting a larger primordial cell number, while first compound leaves had larger spots, since each affected cell underwent more mitoses prior to leaf maturation. Within first compound leaves, the terminal leaflets developed asynchronously in relation to the lateral leaflets. Terminal leaflets were shown to be initiated first, have a larger percentage of the leaflet area covered with spots, and have larger mature leaflet area. The spontaneous rate of MCO, 3.39×10–5 MCO events per mitosis, was increased 282-fold by 1600 R. We also ascertained that Mitomycin C is more specific for Db spot induction than X-rays. These results are compared with our similar irradiation experiments on tobacco shoot apices.  相似文献   

5.
A method for reducing cytochimerism and inducing homogeneous tetraploids in Haplopappus gracilis (2n = 4) was developed in which masses of shoot primordia treated with 0.5 mg/ml of colcemid for 3 days were cut into small meristematic domes. All of the shoot primordia sampled just after the colcemid treatment were cytochimeras that were mixoploids of 2x, 4x and 8x cells. However, when they were allowed to recover in a colcemid-free medium, the frequency of 4x cells spontaneously increased in most of the shoot primordia. Thirty days after the recovery, chimeric masses containing shoot primordia, each of which consisted uniformly of 4x or 2x cells, were observed. In order to obtain a completely homogeneous tetraploid mass, we then cut these primordia into small pieces, each of which had approximately one meristematic dome. Subsequent to this homogeneous tetraploid masses were easily obtained. Tetraploid shoot primordia could propagate with chromosomal stability over a year, and plants regenerated from these tetraploid shoot primordia were also completely tetraploid. These results show that non-chrimeric masses can be easily isolated from artificially induced cytochimeras using masses of shoot primordia as material.  相似文献   

6.
We developed an alternative methodology for in vitro selection of transgenic Medicago truncatula cv. Jemalong plants using a bifunctional construct in which the coding sequences for the green fluorescent protein (GFP) and the β-glucuronidase protein (GUS) are fused. An Agrobacterium-mediated transformation protocol was used followed by regeneration via somatic embryogenesis in the dark, to avoid the synthesis and the consequent autofluorescence of chlorophyll. This method is a clear advantage over antibiotic and herbicide selection in which survival of non-transformed tissue is commonly reported, with the reassurance that all the somatic embryos selected as GFP positive are transformed. This was subsequently corroborated by the detection of GUS activity in leaves, stems and roots of the regenerated plants. Without antibiotic selection, and performing the embryo induction in the dark, it was possible to attest the advantage of using GFP as an in vivo detectable reporter for early embryo selection. The fusion with the GUS coding sequence provided additional evidence for the transformation of the previously selected embryos.  相似文献   

7.
Chlorophyll b is synthesized from chlorophyll a by chlorophyll a oxygenase. We have identified two genes (OsCAO1 and OsCAO2) from the rice genome that are highly homologous to previously studied chlorophyll a oxygenase (CAO) genes. They are positioned in tandem, probably resulting from recent gene duplications. The proteins they encode contain two conserved functional motifs – the Rieske Fe–sulfur coordinating center and a non-heme mononuclear Fe-binding site. OsCAO1 is induced by light and is preferentially expressed in photosynthetic tissues. Its mRNA level decreases when plants are grown in the dark. In contrast, OsCAO2 mRNA levels are higher under dark conditions, and its expression is down-regulated by exposure to light. To elucidate the physiological function of the CAO genes, we have isolated knockout mutant lines tagged by T-DNA or Tos17. Mutant plants containing a T-DNA insertion in the first intron of the OsCAO1 gene have pale green leaves, indicating chlorophyll b deficiency. We have also isolated a pale green mutant with a Tos17 insertion in that OsCAO1 gene. In contrast, OsCAO2 knockout mutant leaves do not differ significantly from the wild type. These results suggest that OsCAO1 plays a major role in chlorophyll b biosynthesis, and that OsCAO2 may function in the dark.  相似文献   

8.
Ascorbic acid improves conversion of white spruce somatic embryos   总被引:7,自引:0,他引:7  
Summary The effects of exogenous applications of ascorbic acid on white spruce somatic embryogenesis were examined. Increasing concentrations of ascorbate (1 μM to 100 μM) in the germination medium enhanced somatic embryo conversion in a linear fashion. At the optimal ascorbate level (100 μM) the number of embryos able to undergo normal conversion, i.e., emergence of both root and shoot, increased from 34% (control) to 58%. The effect of ascorbate had a more pronounced effect on shoot growth than on root emergence; and at 100 μM ascorbate, the percentage of embryos able to produce new leaf primordia increased from 47% (control) to 79%. Root emergence increased slightly from 64% in the control embryos to 74% in the presence of ascorbic acid. The ascorbate-treated embryos were characterized by an enlarged apical region, presumably due to a larger number of leaf primordia produced, and by dark green leaves. When allowed to grow further, these embryos were able to develop into normal plantlets.  相似文献   

9.
10.
H. Adamson  N. Packer  J. Gregory 《Planta》1985,165(4):469-476
Intact plants and isolated leaves of Zostera capricornii Martens ex Aschers were transferred from daylight to darkness. Substantial amounts of chloropyll a and b continued to accumulate in immature and mature tissue in the same ratio as in the light and were incorporated into chlorophyll-protein complexes in the thylakoids. A small amount of protochlorophyllide also accumulated in immature tissue in the dark. Proplastids and immature chloroplasts continued to develop into mature chloroplasts in the dark in the normal manner but prolamellar bodies, which are a conspicuous feature of immature chloroplasts, took longer to disperse than in the light. Protochlorophyllide accumulation and prolamellar-body formation were not correlated. The results indicate that Zostera has a genetic capacity for dark chlorophyll synthesis which is expressed in immature and mature leaf tissue and enables this plant to continue synthesising chlorophyll and assembling chloroplasts at night.Abbreviations Chl chlorophyll - T o time of transfer to darkness  相似文献   

11.
Coprinus domesticus, grown on a synthetic agar medium, failed to produce primordia and basidiocarps unless exposed to light. Lightdark cycles are not required for maturation of basidiocarps. Short exposure to white light induced primordia, but a longer exposure was necessary for primordia to develop into basidiocarps. The length of exposure to light was related inversely to the length the stipe finally attained. Young basidiocarps were phototropic, growing towards the light. The mycelium of cultures were dark brown following exposure to white and blue light, but the mycelium was light yellow in cultures grown in darkness. The blue end of the visible spectrum at intensities ranging from 1.5–3 × 104 ergs/cm2/sec induced mature basidiocarps, whereas green, red and far red failed to induce basidiocarps and primordia.Department of Biology contribution no. 90  相似文献   

12.
When Chlorella protothecoides is grown mixotrophically in thelight in a medium rich in glucose and poor in nitrogen source(urea), one obtains the cells that are entirely devoid of chlorophylland containing only little RNA and protein. When these cells—referredto as "glucose-bleached" cells—are further grown in thelight with provision of nitrogen source, but without glucose,sequential syntheses of RNA, protein and chlorophyll take place.If the glucose-bleached cells are incubated in the dark underthe same nutritional condition, RNA, protein and chlorophyllare also successively formed in relatively small amounts. Thecells obtained under such a condition are, in many respects,similar to the cells that are obtained when the alga is grownin the dark in a medium poor in glucose and rich in the nitrogensource. These cells, which are called the "etiolated cells",are faintly green in color and contain larger amounts of RNAand protein compared with the chlorophyll-less glucose-bleachedcells. The glucose-bleached cells and the etiolated cells showapproximately the same content of DNA per cell. When the etiolatedcells are incubated in the light with provision of nitrogensource, but without glucose, they become green with active synthesisof chlorophyll and additional syntheses of RNA and protein. Based on these results and those to be reported later, it wasconcluded that the greening of the glucose-bleached cells involvesa light-independent phase followed by a light-requiring phasewhich entails the greening of cells and full organization ofchloroplasts, and that the latter process is essentially thesame as that taking place when the etiolated cells are incubatedin the light with provision of nitrogen source in the absenceof glucose. (Received September 5, 1964; )  相似文献   

13.
Light-independent chlorophyll synthesis occurs in some algae, lower plants, and gymnosperms, but not in angiosperms. We have identified a new chloroplast gene, chlB, that is required for the light-independent accumulation of chlorophyll in the green alga Chlamydomonas reinhardtii. The chlB gene was cloned, sequenced, and then disrupted by performing particle gun-mediated chloroplast transformation. The resulting homoplasmic mutant was unable to accumulate chlorophyll in the dark and thus exhibited a yellow-in-the-dark phenotype. The chlB gene encodes a polypeptide of 688 amino acid residues, and is distinct from two previously characterized chloroplast genes (chlN and chlL) also required for light-independent chlorophyll accumulation in C. reinhardtii. Three unidentified open reading frames in chloroplast genomes of liverwort, black pine, and Chlamydomonas moewusii were also identified as chlB genes, based on their striking sequence similarities to the C. reinhardtii chlB gene. A chlB-like gene is absent in chloroplast genomes of tobacco and rice, consistent with the lack of light-independent chlorophyll synthesis in these plants. Polypeptides encoded by the chloroplast chlB genes also show significant sequence similarities with the bchB gene product of Rhodobacter capsulatus. Comparisons among the chloroplast chlB and the bacterial bchB gene products revealed five highly conserved sequence areas that are interspersed by four stretches of highly variable and probably insertional sequences.  相似文献   

14.
Goss R  Opitz C  Lepetit B  Wilhelm C 《Planta》2008,228(6):999-1009
In the present study we address the question which factors during the synthesis of zeaxanthin determine its capacity to act as a non-photochemical quencher of chlorophyll fluorescence. Our results show that zeaxanthin has to be synthesized in the presence of a transmembrane proton gradient. However, it is not essential that the proton gradient is generated by the light-driven electron transport. NPQ-effective zeaxanthin can also be formed by an artificial proton gradient in the dark due to ATP hydrolysis. Zeaxanthin that is synthesized in the dark in the absence of a proton gradient by the low pH-dependent activation of violaxanthin de-epoxidase is not able to induce NPQ. The second important factor during the synthesis of zeaxanthin is the pH-value of the stromal side of the thylakoid membrane. Here we show that the stromal side has to be neutral or slightly basic in order to generate zeaxanthin which is able to induce NPQ. Thylakoid membranes in reaction medium pH 5.2, which experience low pH-values on both sides of the membrane, are unable to generate NPQ-effective zeaxanthin, even in the presence of an additional light-driven proton gradient. Analysing the pigment contents of purified photosystem II light-harvesting complexes we are further able to show that the NPQ ineffectiveness of zeaxanthin formed in the absence of a proton gradient is not caused by changes in its rebinding to the light-harvesting proteins. Purified monomeric and trimeric light-harvesting complexes contain comparable amounts of zeaxanthin when they are isolated from thylakoid membranes enriched in either NPQ-effective or ineffective zeaxanthin.  相似文献   

15.
The relaxation of the non-photochemical quenching of chlorophyll fluorescence has been investigated in cells of the green alga Dunaliella following illumination. The relaxation after the addition of DCMU or darkening was strongly biphasic. The uncoupler NH4Cl induced rapid relaxation of both phases, which were therefore both energy-dependent quenching, qE. The proportion of the slow phase of qE increased at increasing light intensity. In the presence of the inhibitors rotenone and antimycin the slow phase of qE was stabilised for in excess of 15 min. NaN3 inhibited the relaxation of almost all the qE. The implications of these results are discussed in terms of the interpretation of the non-photochemical quenching of chlorophyll fluorescence in vivo and the mechanism of qE.Abbreviations PS II Photosystem II - qQ photochemical quenching of chlorophyll fluorescence - qNP non-photochemical quenching of chlorophyll fluorescence - qE energy-dependent quenching of chlorophyll fluorescence - F m maximum level of chlorophyll fluorescence for dark adapted cells - F m level of fluorescence at any time when qQ is zero  相似文献   

16.
Preillumination, followed by a dark period prior to exposure of dark-grown nondividing cells of Euglena gracilis var. bacillaris to normal lighting conditions for chloroplast development, results in potentiation, or abolishment of the usual lag in chlorophyll accumulation. The degree of potentiation is a function of the length of the preillumination period, the intensity of preilluminating light, and the length of the dark period interposed before re-exposure to continuous light for development. The optimal conditions are found to be: 90 minutes of preillumination with white light at an intensity greater than 30 microwatts per square centimeter (14 foot candles) followed by a dark period of at least 12 hours. Reciprocity is not found between duration and intensity of preilluminating light. Preillumination with blue light and red light was found to be the most effective in promoting potentiation, and the ratio of effectiveness of blue to green to red is consistent with protochlorophyll-(ide) being the photoreceptor. Although red light is effective, there is no reversal by far red light, and these facts, taken together with the effectiveness of blue light, suggest that the phytochrome system is not involved. The amount of chlorophyll formed at the end of preillumination is proportional to the resulting potentiation, suggesting that the amount of protochlorophyll(ide) removed or chlorophyll(ide) formed regulates this phenomenon. Potentiated and nonpotentiated cells show comparable rates of protochlorophyll(ide) resynthesis, suggesting that this is not the limiting factor in nonpotentiated cells. Although light is required for protochlorophyll(ide) conversion in chlorophyll synthesis, a brief preillumination seems also to initiate the production of components in the subsequent dark period which, in nonpotentiated cells, are ordinarily synthesized during the lag period under continuous illumination. These components are necessary to sustain maximal rates of subsequent chlorophyll accumulation.  相似文献   

17.
莲胚芽叶绿素合成对光照的依赖性   总被引:3,自引:0,他引:3  
被子植物的叶绿素合成需要光照,但是莲(Nelumbo nucifera Gaertn.)胚芽却一直被猜测具有在黑暗中合成叶绿素的能力,因为莲胚芽变绿是在四重覆盖物(子叶、种皮、果皮和莲蓬)包被下几乎不大可能秀光的环境中发生的,本实验从正反两个方面否定了这种可能性;首先对处于发育早期的莲蓬进行遮光处理。结果发现莲胚芽虽然可以继续发育,但是它的叶绿素合成却受到严重抑制。积累了大量合成叶绿素的前体,并且这些前体主要与依赖光的原叶绿素酸酯氧还酶(LPOR)结合在一起;其次不依赖光的原叶绿素酸酯氧还酶(DPOR)的编码基因在物种间高度保守,但是用PCR的方法在功基因组中却扩增不同源序列,表明莲胚芽不大可能具有在黑暗中合成叶绿素所必需的酶。两方面实验结果表明,莲胚芽的叶绿素合成只能通过依赖光的途径进行。  相似文献   

18.
Undifferentiated, highly chlorophyllous cell cultures; undifferentiated white cell cultures; green, shoot-forming cultures; and white, shoot-forming cultures of Digitalis purpurea L. were established and subcultured every 3 weeks in liquid media in the light or in the dark. The digitoxin content, the chlorophyll content, and the ribulose bisphosphate carboxylase activity of these cultures were assayed. The light-grown, green, shoot-forming cultures accumulated considerable amounts of digitoxin (about 20 to 40 micrograms per gram dry weight), and the white, shoot-forming cultures without chloroplasts accumulated about one-third that amount of digitoxin. The chlorophyll content and the ribulose bisphosphate carboxylase activity of the undifferentiated green cells were about the same as they were in the green, shoot-forming cultures, but the digitoxin content of the former was extremely low (about 0.05 to 0.2 microgram per gram dry weight), which is about the same as that in undifferentiated white cells without chloroplasts. Thus, it was concluded that the chloroplasts are not essential for the synthesis of digitoxin in Digitalis cells. The optimum concentrations of the tested compounds for accumulation of digitoxin were: benzyladenine, 0.01 to 1 milligram per liter; indoleacetic acid, 0.1 to 1 milligram per liter; α-naphthaleneacetic acid; 0.1 milligram per liter; and 2,4-dichlorophenoxyacetic acid, 0.01 milligram per liter.  相似文献   

19.
A cDNA with sequence similarity to isocitrate lyase (ICL) genes was isolated from the unicellular eukaryotic green alga Chlamydomonas reinhardtii as a light-induced mRNA in the carotenoid biosynthetic mutant strain FN68. The 416 amino acid open reading frame shows significant sequence similarity to isocitrate lyases of bacteria (70%), molds (48%), yeasts (45%), and plants (47%).Expression of the Chlamydomonas ICL gene was tested in the mutant strain FN68, which when grown in the dark fails to accumulate carotenoids and is deficient in chlorophyll, and in CC400G, a strain that accumulates wild-type levels of carotenoids and chlorophyll. In vegetative CC400G cells, ICL mRNA accumulated to a high level in the dark and declined to a barely detectable level within 30 min of exposure to light. This response was more sensitive to white (tungsten filament) or red light than green or blue light, excluding cryptochrome and rhodopsin as the photoreceptor. These results are consistent with excitation by chlorophyll and/or a phytochrome-related photoreceptor. In vegetative FN68 cells, ICL mRNA abundance was very low in the dark, but increased dramatically in response to light. At intensities above threshold, excitation by far-red or red light-induced ICL mRNA accumulation to the highest levels. The threshold of the response was lowest for far-red and blue light. These results are consistent with excitation of a photochromic far-red-responsive pigment.  相似文献   

20.
Illumination of etiolated maize leaves with low-intensity light produces a chlorophyll/pheophytin-containing complex. The complex contains two native chlorophyll forms Chl 671/668 and Chl 675/668 as well as pheophytin Pheo 679/675 (with chlorophyll/pheophytin ratio of 2/1). The complex is formed in the course of two successive reactions: reaction of protochlorophyllide Pchlde 655/650 photoreduction resulted in chlorophyllide Chlde 684/676 formation, and the subsequent dark reaction of Chlde 684/676 involving Mg substitution by H2 in pigment chromophore and pigment esterification by phytol. Out data show that the reaction leading to chlorophyll/pheophytin-containing complex formation is not destructive. The reaction is in fact biosynthetic, and is competitive with the known reactions of biosynthesis of the bulk of chlorophyll molecules. The relationship between chlorophyll and pheophytin biosynthesis reactions is controlled by temperature, light intensity and exposure duration.The native complex containing pheophytin a and chlorophyll a is supposed to be a direct precursor of the PS II reaction centre in plant leaves.Abbreviations Chl chlorophyll - Chlde chlorophyllide - Pchl protochlorophyll - Pchlde protochloropyllide - Pheo pheophytin - PS II RC Photosystem II reaction centres. Abbreviations for native pigment forms: the first number after pigment symbol corresponds to the maximum position of low-temperature fluorescence band (nm); the second number corresponds to the maximum position of long wave absorption band  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号