首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 838 毫秒
1.

CWM, isolated cell wall material
ECW, isolated endodermal cell walls
G, guaiacyl monomer
H, p-hydroxyphenyl monomer
HCW, isolated hypodermal cell walls
RHCW, isolated rhizodermal and hypodermal cell walls
S, syringyl monomer
XV, isolated xylem vessels

Endodermal cell walls of the three dicotyledoneous species Pisum sativum L., Cicer arietinum L. and Ricinus communis L. were isolated enzymatically and analysed for the occurrence of the biopolymers lignin and suberin. From P. sativum, endodermal cell walls in their primary state of development (Casparian strips) were isolated. Related to the dry weight, these isolates contained equal amounts of suberin (2·5%) and lignin (2·7%). In contrast, the endodermal cell walls of C. arietinum and R. communis, which were nearly exclusively in their secondary state of development, contained significantly higher proportions of suberin (10–20%) and only traces of lignin (1–2%). The results of the chemical analyses were supported by a microscopic investigation of Sudan III-stained root cross-sections, showing a Casparian strip restricted to the radial walls of the endodermis of P. sativum and well-pronounced red suberin lamellae in C. arietinum and R. communis roots. Compared with recently investigated monocotyledoneous species, higher amounts of suberin by one order of magnitude were detected with the secondary state of development of dicotyledoneous species. Furthermore, the carbohydrate and protein contents of primary (Clivia miniata Reg. and Monstera deliciosa Liebm.), secondary (C. arietinum and R. communis) and tertiary endodermal cell walls (Allium cepa L. and Iris germanica L.) were determined. The relative carbohydrate content of secondary endodermal cell walls was low (14–20%) compared with the content of primary (42–50%) and tertiary endodermal cell walls (60%), whereas the protein content of isolated endodermal cell walls was high in primary (13%) and secondary (8%) and low in tertiary endodermal cell walls (0·9–2%). The results presented here indicate that the quantitative chemical composition of primary, secondary, and tertiary endodermal cell walls varies significantly. Finally, cell wall proteins are described as an additional important constituent of endodermal cell walls, with the highest concentrations occurring in primary (Casparian strips) and secondary endodermal cell walls.  相似文献   

2.
The chemical composition of isolated endodermal cell walls from the roots of the five monocotyledoneous species Monstera deliciosa Liebm., Iris germanica L., Allium cepa L., Aspidistra elatior Bl. and Agapanthus africanus (L.) Hoffmgg. was determined. Endodermal cell walls isolated from aerial roots of M. deliciosa were in their primary developmental state (Casparian bands). They contained large amounts of lignin (6.5% w/w) and only traces of suberin (0.5% w/w). Endodermal cell walls isolated from the other four species were in their tertiary developmental state. Lignin was still the more abundant cell wall polymer with amounts ranging from 3.8% (w/w, A. cepa) to 4.5% (w/w, I. germanica). However, compared to endodermal cell walls in their primary state of development (Casparian bands), tertiary endodermal cell walls contained significantly higher amounts of suberin, ranging from 1.8% (w/w, I. germanica) to 3.0% (w/w, A. africanus). Thus, chemical characterization of endodermal cell walls from five different species revealed that lignin was the dominant cell wall polymer in the Casparian band of M. deliciosa, whereas tertiary endodermal cell walls contained, in addition to lignin, increasing amounts of suberin (I. germanica, A. cepa, A. elatior and A. africanus). Besides the two biopolymers lignin and suberin, cell wall carbohydrates in the range of between 40 and 60% were also quantified. The sum of all cell wall compounds investigated by gas chromatography resulted in a recovery of 50–80% of the dry weight of the isolated cell wall material. Quantitative chromatographic results in combination with microscopic studies are consistent with the existence of a distinct suberin lamella and lignified tertiary wall deposits. From these data it can be concluded that the barrier properties of the endodermis towards the apoplastic transport of ions and water will increase from primary to tertiary endodermal cell walls due to their increasing amounts of suberin. Received: 23 August 1997 / Accepted: 28 January 1998  相似文献   

3.
The chemical nature of enzymatically isolated endodermal cell walls from Cicer arietinum L., Clivia miniata Reg. and Iris germanica L. was studied by FTIR (Fourier transform infrared) spectroscopy. Observed frequencies were assigned to functional groups present in the cell wall and relative amounts of the biopolymers suberin and lignin, cell wall carbohydrates and proteins were determined. Infrared absorption spectra indicated structural characteristics for the three different developmental states of the isolated endodermal cell wall: primary endodermis with Casparian strips (state I), secondary endodermis with suberin lamellae (state II), and tertiary endodermis with U-shaped cell wall depositions (state III). The data obtained from this study are compared with previous results obtained by chemical degradation of isolated endodermal cell walls and subsequent determination of monomeric degradation products by gas chromatography and mass spectrometry. It is concluded that FTIR spectroscopy represents a direct and nondestructive method suitable for the rapid investigation of isolated plant cell walls. Furthermore, the observation that the suberin-assigned absorption bands disappeared after transesterification of the samples with BF3-methanol confirmed that suberin is completely degraded by this treatment. Received: 20 February 1999 / Accepted: 25 May 1999  相似文献   

4.
The root endodermis of Clivia miniata Reg. was successfully isolated using the cell wall degrading enzymes cellulase and pectinase. The enzymes did not depolymerize those regions of the primary cell walls of anticlinal endodermal root cells where the Casparian strips were located. Since the endodermis of C. miniata roots remained in its primary developmental state over the whole root length, endodermal isolates essentially represented Casparian strips. Thus, sufficient amounts of isolated Casparian strips could be obtained to allow further detailed investigations of the isolates by microscopic, histochemical and analytical methods. Scanning electron microscopy revealed the reticular structure of the Casparian strips completely surrounding the central cylinder of the roots. Whereas in younger parts of the root only the anticlinal cell walls of the endodermis remained intact in the isolates, in older parts of the root the periclinal walls also restricted enzymatic degradation due to the deposition of lignin. Extracts of the isolates with organic solvents did not reveal any wax-like substances which might have been deposited within the cell wall forming a transport barrier, as is the case with cutin and suberin. However, several histochemical and analytical methods (elemental analysis and FTIR spectroscopy) showed that the chemical nature of the Casparian strips of C. miniata roots can definitely be a lignified cell wall. These findings are in complete agreement with studies carried out at the beginning of this century on the chemical nature of the Casparian strips of several other plant species. The implications of these results concerning apoplasmatic transport of solutes and water across Casparian strips are discussed.  相似文献   

5.
应用冰冻切片、酶解分离、荧光显微技术和傅里叶红外光谱分析(FTIR)等手段,对华山松初生根和针叶内皮层凯氏带进行了分离、显微结构特征和化学成分的比较。研究结果表明:针叶凯氏带的“网格”结构比较整齐,大小较一致,排列也较规则,同时在“网格”的纵向壁上具有明显的初生纹孔场。而初生根凯氏带网状结构的大小、排列均不规则,在其“网格”的纵向壁上的初生纹孔场不明显。根据FTIR的检测结果显示:初生根凯氏带中木栓质和木质素的含量均高于针叶,而纤维素的含量则明显低于针叶;两者细胞壁蛋白的含量基本相同。本文的研究结果为深入探讨植物地下部分和地上部分凯氏带的生理功能提供新的佐证。  相似文献   

6.
Adventitious roots of Primula acaulis Jacq. are characterized by broad cortex and narrow stele during the primary development. Secondary thickening of roots occurs through limited cambial growth together with secondary dilatation growth of the persisting cortex. Close to the root tip, at a distance of ca. 4 mm from the apex, Casparian bands (state I of endodermal development) within endodermal cells develop synchronously. During late, asynchronous deposition of suberin lamellae (state II of endodermal development), a positional effect is clearly expressed - suberization starts in the cells opposite to the phloem sectors of the vascular cylinder at a distance of 30 – 40 mm from the root tip. The formation of secondary walls in endodermis (state III of endodermal development) correlates with the beginning of secondary growth of the root at a distance of ca. 60 mm. Endodermis is the only cortical layer of primrose, where not only cell enlargement but also renewed cell division participate in the secondary dilatation growth. The original endodermal cells additionally divide anticlinally only once. Newly-formed radial walls acquire a typical endodermal character by forming Casparian bands and deposition of suberin lamellae. A network of endodermal Casparian bands of equal density develops during the root thickening by the tangential expansion of cells and by the formation of new radial walls with characteristic wall modifications. These data are important since little attention has been paid up till now to the density of endodermal network as a generally significant structural and functional trait of the root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The root system is particularly affected by unfavourable conditions because it is in direct contact with the soil environment. Casparian strips, a specialised structure deposited in anticlinal walls, are characterised by the impregnation of the primary wall pores with lignin and suberin. The Casparian strips in the endo- and exodermis of vascular plant roots appear to play an important role in preventing the non-selective apoplastic bypass of salts into the stele along the apoplast under salt stress. However, only a few investigations have examined the deposition and function of these apoplastic barriers in response to salt stress in higher plants.  相似文献   

8.
9.
Wu X  Lin J  Lin Q  Wang J  Schreiber L 《Plant & cell physiology》2005,46(11):1799-1808
The structure and development of endodermal Casparian strips in Pinus bungeana needles and roots were studied by scanning electron microscopy and fluorescence microscopy. Primary pit fields (PFs) frequently occurred in radial walls of Casparian strips isolated from needles, whereas PFs were never detected in Casparian strips from roots. Formation of Casparian strips in needles as well as roots started at the outer parts of the radial walls and they finally occupied the entire radial walls of the endodermis. Fourier transform infrared (FTIR) spectroscopy of Casparian strips isolated from roots revealed significant absorption bands characteristic for suberin. However, in Casparian strips of needles, evidence for suberin was rarely detected by FTIR spectroscopy. The apoplastic permeability of Casparian strips in needles and roots was probed by the apoplastic tracers calcofluor and berberine. Casparian strips in roots efficiently blocked the apoplastic transport (AT) of calcofluor and berberine. Casparian strips in needles blocked the AT of calcofluor, but diffusion of berberine was not inhibited and berberine thiocyanate crystals were detectable in the vascular tissue of the needles. From the data presented, it must be concluded that Casparian strips in needles, which are characterized by the absence of suberin, are more solute permeable compared with Casparian strips in roots.  相似文献   

10.
By using cell wall degrading enzymes, Casparian strips were for the first time isolated from Pinus bungeana needle endodermis. They appeared as a fine network, similar to those isolated from roots. Fourier transform infrared spectroscopic analysis provided evidence that the Casparian strips were impregnated with lignin, suberin, cellulose and cell wall proteins.  相似文献   

11.
Lukas Schreiber 《Planta》1996,199(4):596-601
Endodermal cell walls and xylem vessels were isolated enzymatically from Clivia miniata Reg. roots. Transmission-electron-microscopic investigation of cross-sections of intact C. miniata roots and scanning-electron-microscopic investigation of isolated endodermal cell walls indicated that the root endodermis of C. miniata is essentially in its primary state of development. Isolated Casparian strips and xylem vessels were subjected to two different degradation methods usually applied to prove the existence of lignin, namely, cupric oxide oxidation and thioacidolysis. The reaction products obtained were typical aromatic derivatives of the natural lignin precursors coniferyl and sinapyl alcohols, and, in traces, of p-coumaryl alcohol, indicating the occurrence of lignin in the polymers from both Casparian strips and xylem vessels. The qualitative chemical compositions of the polymers from the two sources were similar, whereas the quantitative compositions were different, indicating that the molecular structure of the lignin polymer in the Casparian strips was different from that in the xylem vessels. Thus, for the first time, direct chemical evidence has been obtained that Casparian strips of C. miniata roots contain lignin as a major cell wall polymer.The author is indebted to Prof. Dr. G. Krohne (Zentrale Abteilung für Elektronenmikroskopie, Universität Würzburg, Germany) and to Prof. Dr. R. Guggenheim (Labor für Rasterelektronenmikroskopie, Universität Basel, Schweiz) for offering the opportunity for transmission-electron-microscopic and low-temperature scanning-electron-microscopic investigations, respectively. Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.  相似文献   

12.
The hydraulic conductivity of roots (Lpr) of 6- to 8-d-old maize seedlings has been related to the chemical composition of apoplastic transport barriers in the endodermis and hypodermis (exodermis), and to the hydraulic conductivity of root cortical cells. Roots were cultivated in two different ways. When grown in aeroponic culture, they developed an exodermis (Casparian band in the hypodermal layer), which was missing in roots from hydroponics. The development of Casparian bands and suberin lamellae was observed by staining with berberin-aniline-blue and Sudan-III. The compositions of suberin and lignin were analyzed quantitatively and qualitatively after depolymerization (BF3/methanol-transesterification, thioacidolysis) using gas chromatography/mass spectrometry. Root Lpr was measured using the root pressure probe, and the hydraulic conductivity of cortical cells (Lp) using the cell pressure probe. Roots from the two cultivation methods differed significantly in (i) the Lpr evaluated from hydrostatic relaxations (factor of 1.5), and (ii) the amounts of lignin and aliphatic suberin in the hypodermal layer of the apical root zone. Aliphatic suberin is thought to be the major reason for the hydrophobic properties of apoplastic barriers and for their relatively low permeability to water. No differences were found in the amounts of suberin in the hypodermal layers of basal root zones and in the endodermal layer. In order to verify that changes in root Lpr were not caused by changes in hydraulic conductivity at the membrane level, cell Lp was measured as well. No differences were found in the Lp values of cells from roots cultivated by the two different methods. It was concluded that changes in the hydraulic conductivity of the apoplastic rather than of the cell-to-cell path were causing the observed changes in root Lpr. Received: 17 March 1999 / Accepted: 22 June 1999  相似文献   

13.
应用荧光显微技术、傅里叶变换显微红外光谱分析(FTIR)、扫描电镜及X-射线能谱微区分析等手段,对白皮松(Pinus bungeana)子叶、初生叶及2a生针叶内皮层细胞径向壁的显微结构特征、化学成分,以及在叶子横切面上Na和Cl的微区分布进行分析。通过荧光显微观察发现,白皮松子叶内皮层不具凯氏带,而初生叶及2a生针叶均存在凯氏带加厚现象。根据FTIR的检测结果显示:子叶内皮层细胞径向壁不含木栓质或极少,2a生针叶内皮层细胞径向壁木栓质含量高于初生叶。对相应区域的X射线微区分析表明,子叶内皮层对Na和Cl在质外体运输中不起障碍作用,而初生叶与2a生针叶内皮层阻碍Na和Cl以质外体途径进入维管组织。研究结果表明:具凯氏带加厚的内皮层细胞壁中木栓质含量决定其在质外体运输过程中的生理功能。  相似文献   

14.
Cell walls of the periderm of native potato tuber (Solanum tuberosum L. cv. Primura) consist of a primary wall, a suberized secondary wall and a tertiary wall. With a mixture of pectinase and cellulase intact periderm membranes can be isolated. Isolation does not affect fine structure. It is suggested that the lignin in the middle lamellae and primary walls prevents the enzymes from digesting pectinaceous materials and cellulose. In specimens fixed with OsO4, the suberized walls appear as alternating electrondense and electron-lucent lamellae. This lamellar architecture is not altered by extraction with chloroform. Therefore, the current view that the electronlucent lamellae consist of soluble lipids (waxes) can no longer be maintained. It is argued that the lamellation is a property of the suberin itself, and the suberized wall consists of alternating layers of suberins differing in polarity. A hypothesis of suberin assembly from sub-units is advanced and the subunits are shown for the first time.  相似文献   

15.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

16.
Summary We investigated the histochemistry and ultrastructure of the cell walls of mestome sheaths and parenchymatous bundle sheaths of ten species of grasses. The species surveyed included representatives from all the major photosynthetic types: C3-Bromus tectorum, Phalaris arundinacea; C4/NAD-ME-Eragrostis cilianensis, Panicum capillare; C4/NAD-ME/PCK-Bouteloua curtipendula; C4/PCK-Chloris gayana, Sporobolus elongatus; C4/NADP-ME-Echinochloa crus-galli, Setaria glauca, Themeda triandra. All vein orders (designated here as major, minor and transverse) from mature leaves of each species were tested histochemically for lipids and phenols, and the majority of species were also examined with the electron microscope. A suberized lamella was detected ultrastructurally in at least some walls of major vein bundle sheath cells of all species examined. These lamellae were also present in some cells associated with the minor veins of the C3 species and in the minor and transverse veins of the C4/NADP-ME species. Histochemical tests for lipids and phenols consistently failed to differentiate this layer. Based on these tests, none of the vein orders in any species showed evidence of a Casparian band. In all suberized bundle sheaths, the compound middle lamella between cells with suberin lamellae is modified by the presence of phenols. These did not, however, confer resistance to acid digestion to the cell layer, in contrast to cell layers with Casparian bands. Therefore, although the mestome sheath has some features in common with the root endodermis (i.e. cells with a suberized lamella and thick, cellulosic walls which may be further modified), we could find no substantive anatomical or ultrastructural evidence for the presence of a Casparian band in any of the grass leaves investigated. The significance of these observations is discussed in the context of apoplastic permeability of these walls.  相似文献   

17.
The present study examined anatomical and histochemical features of belowground axes of four grass species (Cynodon dactylon, Eremochloa ophiuroides, Hemerthria altissima, and Paspalum distichum) which occur in wetlands and can survive flooding. They may help to restore the degraded ecological environment of the floodplain in the Jianghan Plain and the Three Gorges Dam riparian zone of the Yangtze River, China. Brightfield and epifluorescence microscopy gave evidence that the roots of the four species share similar structures with each having endodermis and exodermis, with mostly Y-shaped Casparian walls, suberin lamellae, and lignified secondary cell walls. But the timing of wall deposit apposition and the degree of secondary thickening vary among the species. The root cortical aerenchyma is basically lysigenous. Rhizomes and stolons have an epidermis with thick cuticle, a peripheral, mechanically stiff ring with or without small embedded vascular bundles and a chlorenchyma. The cortex is of varying thickness, with or without collenchymas. A central core of vascular bundles is usually surrounded by a sclerenchyma ring of varying thickness, depending upon the species. Pith cavities and small cortical cavities are normal except for unusual honeycomb or expansigenous aerenchyma in one species. The peripheral mechanical ring and the sclerenchyma ring contain suberin and lignin, but no detectable Casparian bands. Even in non-flooded conditions, anatomical traits of these species provide adaptive features allowing them to occupy riparian zones as they occur at the Yangtze River.  相似文献   

18.
Ultrastructure and development of apoplastic barriers within indeterminate root nodules formed by Vicia faba L. were examined by light and electron microscopy. The nodule outer cortex is separated from the inner cortex by a heavily suberized nodule endodermis, which matures in submeristematic regions and possesses suberin lamellae. Unsuberized passage cells are present near vascular strands, which are surrounded by a vascular endodermis attached on the inner side of the nodule endodermal cell walls. The vascular endodermis appears immediately below the meristematic apex in developmental state I (Casparian bands), gradually develops suberin lamellae, and attains developmental state II at the base of the nodule. For chemical analysis apoplastic barrier tissues were dissected after enzymatic digestion of non-impregnated tissues. Root epidermal and endodermal cell walls as well as nodule outer cortex could be isolated as pure fractions; nodule endodermal cell walls could not be separated from vascular endodermal cell walls and enclosed xylem vessels. Gas chromatography-flame ionization detection and gas chromatography-mass spectrometry were applied for quantitative and qualitative analysis of suberin and lignin in isolated cell walls of these tissues. The suberin content of isolated endodermal cell walls of nodules was approximately twice that of the root endodermal cell walls. The suberin content of the nodule outer cortex and root epidermal cell walls was less than one-tenth of that of the nodule endodermal cell wall. Substantial amounts of lignin could only be found in the nodule endodermal cell wall fraction. Organic solvent extracts of the isolated tissues revealed long-chain aliphatic acids, steroids, and triterpenoid structures of the lupeol type. Surprisingly, extract from the outer cortex consisted of 89% triterpenoids whereas extracts from all other cell wall isolates contained not more than 16% total triterpenoids. The results of ultrastructural and chemical composition are in good correspondence and underline the important role of the examined tissues as apoplastic barriers.  相似文献   

19.
Soybean (Glycine max L. Merr.) is a versatile and important agronomic crop grown worldwide. Each year millions of dollars of potential yield revenues are lost due to a root rot disease caused by the oomycete Phytophthora sojae (Kaufmann & Gerdemann). Since the root is the primary site of infection by this organism, we undertook an examination of the physicochemical barriers in soybean root, namely, the suberized walls of the epidermis and endodermis, to establish whether or not preformed suberin (i.e. naturally present in noninfected plants) could have a role in partial resistance to P. sojae. Herein we describe the anatomical distribution and chemical composition of soybean root suberin as well as its relationship to partial resistance to P. sojae. Soybean roots contain a state I endodermis (Casparian bands only) within the first 80 mm of the root tip, and a state II endodermis (Casparian bands and some cells with suberin lamellae) in more proximal regions. A state III endodermis (with thick, cellulosic, tertiary walls) was not present within the 200-mm-long roots examined. An exodermis was also absent, but some walls of the epidermal and neighboring cortical cells were suberized. Chemically, soybean root suberin resembles a typical suberin, and consists of waxes, fatty acids, omega-hydroxy acids, alpha,omega-diacids, primary alcohols, and guaiacyl- and syringyl-substituted phenolics. Total suberin analysis of isolated soybean epidermis/outer cortex and endodermis tissues demonstrated (1) significantly higher amounts in the endodermis compared to the epidermis/outer cortex, (2) increased amounts in the endodermis as the root matured from state I to state II, (3) increased amounts in the epidermis/outer cortex along the axis of the root, and (4) significantly higher amounts in tissues isolated from a cultivar ('Conrad') with a high degree of partial resistance to P. sojae compared with a susceptible line (OX760-6). This latter correlation was extended by an analysis of nine independent and 32 recombinant inbred lines (derived from a 'Conrad' x OX760-6 cross) ranging in partial resistance to P. sojae: Strong negative correlations (-0.89 and -0.72, respectively) were observed between the amount of the aliphatic component of root suberin and plant mortality in P. sojae-infested fields.  相似文献   

20.
Rice plants were grown hydroponically and roots were prepared for light and electron microscopy using standard techniques. The roots are bounded by an epidermis, exodermis, and fibrous layer. The exodermis has a suberin lamella along its inner tangential wall. The fibrous layer is composed of thick-walled lignified cells with little pitting. The cortical parenchyma is compact when young, but expands and separates to form a zone of cell walls and air spaces in a spoked arrangement. Supporting columns of living parenchyma cells are occasionally present, particularly near lateral roots. The endodermis is typical for grasses with Casparian strips, suberin lamellae, and tertiary state walls with numerous pits. The pericycle and pith become sclerified. Protoxylem elements alternate with protophloem in the young root; later, early metaxylem, late metaxylem, and metaphloem proliferate. The exodermis, fibrous layer, lacunate cortex, and endodermis appear to present a formidable barrier to radial ion movement in the mature portions of the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号