首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Polyamines are able to affect Fe2+ autoxidation in the presence of suitable low molecular weight phosphorus-containing compounds; the inhibitory effect exerted by polyamines is directly related to their ability to bind phosphorus-containing compounds [1].It is well known that polyamines, as polycations at physiological pH, bind strongly to nucleic acids. In this paper it is shown that polyamines, also in the presence of nucleic acids, inhibit Fe2+ autoxidation and thus depress the generation of free oxygen radicals. Most of the nucleic acids tested inhibited Fe2+ autoxidation although the concentration which causes half maximal effect differs. Polyamine effect on Fe2+ autoxidation varies greatly depending on the single or double stranded nature of the nucleic acid. In the present of single stranded nucleic acids, spermine and spermidine potentiate the inhibition of Fez+ autoxidation by these nucleic acids. A relationship exists between the ability of spermine to interact with single stranded nucleic acids and to inhibit Fe2+ autoxidation in their presence. When double stranded nucleic acids are present, polyamines reverse the inhibition of Fee+ autoxidation exerted by these nucleic acids. Molecular mechanisms are proposed to explain these experimental results. The hypothesis that polyamines may inhibit oxidative damage caused to nucleic acids by Fe2+ autoxidation, is also discussed.Abbreviations poly [A] polyadenylic acid (5) - poly [C] polycytidylic acid (5) - poly [1] polyinosinic acid (5) - poly [G] polyguanylic acid (5) - poly [A. U] polyadenylic-uridylic acid - poly [A] poly [U] polyadenylic-polyuridylic acid  相似文献   

2.
The in vitro mechanism by which polyamines affect protein kinase C (PK C) activation process was investigated in a reconstituted system consisting of purified enzyme and phospholipid vesicles of various phosphatidylserine content. It was found that the addition of spermine greatly interferes with the association of PK C to liposomes. This tetramine, at micromolar concentrations, was most potently effective while other polyamines such as spermidine and putrescine were almost ineffective; therefore the modulatory action appeared to be structure specific. The spermine effect is dramatically influenced by the density of the phosphatidylserine present on the liposome, suggesting the complex formation with the acidic component on phospholipid vesicles to be the mechanism by which this polyamine exerts its modulatory action.  相似文献   

3.
The uptake characteristics of polyamines, such as spermine, spermidine and putrescine, have been investigated using brush-border membrane vesicles isolated from the small intestine of rats. The uptake of these polyamines into the membrane vesicles was high and the order of uptake was spermine greater than spermidine greater than putrescine at medium pH 7.5, respectively. The medium pH considerably affected the uptake of these polyamines and the amount of uptake increased remarkably with an increase of the medium pH (pH 7.5 or 8.0 greater than pH 5.5). An inward Na+ gradient did not stimulate the uptake rate of any of these polyamines. We have also examined the binding behaviour to the membrane lipid, phospholipids and total lipid, and there was a good correlation in the binding properties, pH-dependency and uptake activity, between the liposomes and brush-border membrane vesicles. These results suggest that the uptake of the polyamine into the vesicles consisted of rapid binding to the outside intestinal surface and slower binding to the inside membrane after permeation. Furthermore, findings from experiments concerning the mutual inhibition among these polyamines and concerning the effect of other polycations, having 2-5 amines in number, on the uptake of spermine, suggest that the number of amino groups in the polyamine molecules plays an important role in the uptake process into the brush-border membrane vesicles.  相似文献   

4.
To estimate the polyamine distribution in bovine lymphocytes and rat liver, the binding constants (K) for DNA, RNA, phospholipid, and ATP were determined under the conditions of 10 mM Tris-HCl, pH 7.5, 2 mM Mg2+, and 150 mM K+. The binding constants of spermine for calf thymus DNA, Escherichia coli 16 S rRNA, phospholipid in rat liver microsomes and ATP were 1.15 x 10(2), 6.69 x 10(2), 2.22 x 10(2), and 5.95 x 10(2) M-1, respectively. From these binding constants and experimentally determined cellular concentrations of macromolecules, ATP, and polyamines, spermine distribution in the cells was estimated. In bovine lymphocytes, the mols of spermine bound to DNA, RNA, phospholipid, and ATP were 0.79, 3.7, 0.23, and 4.3 per 100 mol of phosphate of macromolecules or ATP, respectively. In rat liver, they were 0.19, 1.0, 0.05, and 0.97/100 mol of phosphate of macromolecules or ATP, respectively. The binding constants of spermidine for macromolecules and ATP were smaller than those of spermine, but a similar tendency was observed with spermidine distribution among macromolecules and ATP in the above two cells. The amount of polyamine bound to DNA and phospholipid was significantly lower than that to RNA. When either the Mg2+ or K+ concentration increased, the amount of free spermine and that bound to RNA and ATP increased, but the amount of spermine bound to DNA and phospholipid decreased. The results indicate that most polyamines exist as a polyamine-RNA complex in cells. Under the conditions that globin synthesis is stimulated by spermine in a rabbit reticulocyte cell-free system, the amount of spermine bound to RNA was very close to the value estimated in the cells.  相似文献   

5.
Quantitative structure activity relationship studies on the activation of AMP deaminase by polyamines were carried out. Polyamine enhanced the maximal velocity of AMP deaminase without changing the affinity for the substrate AMP. Activation by polyamines of AMP deaminase can be accounted for by the simple Michaelis-Menten mechanism in the presence of ATP. A close correlation between the structure and activation constants for polyamines suggests that the binding of polyamine to AMP deaminase involves primarily polar interactions.  相似文献   

6.
A transport system for polyamines was studied with both intact cells and membrane vesicles of an Escherichia coli polyamine-deficient mutant. Polyamine uptake by intact cells and membrane vesicles was inhibited by various protonophores, and polyamines accumulated in membrane vesicles when D-lactate was added as an energy source or when a membrane potential was imposed artificially by the addition of valinomycin to K+-loaded vesicles. These results show that the uptake was dependent on proton motive force. Transported [14C]putrescine and [14C]spermidine were not excreted by intact cells upon the addition either of carbonyl cyanide m-chlorophenylhydrazone, A23187, and Ca2+ or of an excess amount of nonlabeled polyamine. However, they were excreted by membrane vesicles, although the degree of spermidine efflux was much lower than that of putrescine efflux. These results suggest that the apparent unidirectionality in intact cells has arisen from polyamine binding to nucleic acids, thus giving rise to a negligible free intracellular concentration of polyamines. Polyamine uptake, especially putrescine uptake, was inhibited strongly by monovalent cations. The Mg2+ ion inhibited spermidine and spermine uptake but not putrescine uptake.  相似文献   

7.
Polyamine transport,accumulation, and release in brain   总被引:3,自引:0,他引:3  
Cycling of polyamines (spermine and spermidine) in the brain was examined by measuring polyamine transport in synaptic vesicles, synaptosomes and glial cells, and the release of spermine from hippocampal slices. It was found that membrane potential-dependent polyamine transport systems exist in synaptosomes and glial cells, and a proton gradient-dependent polyamine transport system exists in synaptic vesicles. The glial cell transporter had high affinities for both spermine and spermidine, whereas the transporters in synaptosomes and synaptic vesicles had a much higher affinity for spermine than for spermidine. Polyamine transport by synaptosomes was inhibited by putrescine, agmatine, histidine, and histamine. Transport by glial cells was also inhibited by these four compounds and additionally by norepinephrine. On the other hand, polyamine transport by synaptic vesicles was inhibited only by putrescine and histamine. These results suggest that the polyamine transporters present in glial cells, neurons, and synaptic vesicles each have different properties and are, presumably, different molecular entities. Spermine was found to be accumulated in synaptic vesicles and was released from rat hippocampal slices by depolarization using a high concentration of KCl. Polyamines, in particular spermine, may function as neuromodulators in the brain.  相似文献   

8.
The actions of three endogenous polyamines (spermine, spermidine, and putrescine) were defined on Ca2+ release channels (ryanodine receptors, RyRs) isolated from rabbit cardiac sarcoplasmic reticulum. The current-voltage relationship of the RyR channel was N-shaped in the presence of polyamine (1-5 mM). Polyamine blocked conduction near 0 mV, but the blockade was relieved at large potentials. Polyamines acted (blocked) from both sides of the channel. Polyamine efficacy was dependent on current direction and was inversely related to the ion selectivity of the RyR pore. This suggests that polyamine interacts with current-carrying ions in the permeation pathway. The apparent half-block concentration of spermine at 0 mV was < 0.1 mM. The features of polyamine blockade suggest that the polyamines are permeable cationic blockers of the RyR channel. Further, the levels of polyamines found in muscle cells are sufficient to block single RyR channels and thus may alter the sarcoplasmic reticulum Ca2+ release process in situ.  相似文献   

9.
The polyamines spermine, spermidine, and putrescine inhibit the activity of phospholipase A2 (Naja naja) and phospholipase C (Clostridium welchii) on phospholipid vesicles and mitochondrial membranes as sources of substrate phospholipids. The inhibitory effect is highest for spermine and lowest for putrescine. With both enzymes, inhibition is stronger when phospholipid vesicles rather than mitochondrial membranes are used as the substrate. No clear competition of polyamines with Ca2+, which is required for the activity of both enzymes, has been observed. The inhibition appears to be due to steric hindrance of enzyme-substrate interaction due to the binding of the organic polycations to the phospholipid bilayer.  相似文献   

10.
Glucocorticoid hormones, Ca2+ ionophores, and some toxic chemicals activate a suicide process in thymocytes, known as apoptosis or programmed cell death. A crucial event in apoptosis is the activation of a Ca(2+)- and Mg(2+)-dependent endonuclease that promotes extensive DNA fragmentation. In this study, we investigated the effect of various polyamines on endonuclease activation leading to thymocyte apoptosis. We found that both glucocorticoid- and Ca2+ ionophore-induced DNA fragmentation and apoptosis were prevented by spermine. Other polyamines such as putrescine or spermidine had moderate or no effect. Moreover, spermine, and to a lesser extent spermidine, but not putrescine, prevented endonuclease activation in permeabilized liver nuclei incubated in the presence of Ca2+ and Mg2+, indicating that spermine efficiency in blocking DNA fragmentation was related to the interaction of this polyamine with the endonuclease or its substrate, DNA. Experiments with the fluorescent dye, ethidium bromide, and a purified preparation of liver endonuclease revealed that the protective effect of spermine on DNA fragmentation was related to its ability to modify the chromatin arrangement. Thymocytes incubated with methyl glyoxal bis(guanylhydrazone) to deplete intracellular spermine exhibited spontaneous DNA fragmentation, which suggests that modulation of the intracellular polyamine content and regulation of chromatin structure may play a critical role in the early phases of apoptosis. Finally, these results demonstrate that inhibition of DNA fragmentation also prevents the onset of apoptosis, directly linking endonuclease activation and cell death.  相似文献   

11.
Polyamines such as spermidine and spermine are abundant in living cells and are believed to aid in the dense packaging of cellular DNA. DNA condensation is a prerequisite for the transport of gene vectors in living cells. To elucidate the structural features of polyamines governing DNA condensation, we studied the collapse of lambda-DNA by spermine and a series of its homologues, H2N(CH2)3NH(CH2)n=2-12NH(CH2)3NH2 (n = 4 for spermine), using static and dynamic light scattering techniques. All polyamines provoked DNA condensation; however, their efficacy varied with the structural geometry of the polyamine. In 10 mM sodium cacodylate buffer, the EC50 values for DNA condensation were comparable (4 +/- 1 microM) for spermine homologues with n = 4-8, whereas the lower and higher homologues provoked DNA condensation at higher EC50 values. The EC50 values increased with an increase in the monovalent ion (Na+) concentration in the buffer. The slope of a plot of log [EC50(polyamine4+)] against log [Na+] was approximately 1.5 for polyamines with even number values of n, whereas the slope value was approximately 1 for compounds with odd number values of n. Dynamic light scattering measurements showed the presence of compact particles with hydrodynamic radii (Rh) of about 40-50 nm for compounds with n = 3-6. Rh increased with further increase in methylene chain length separating the secondary amino groups of the polyamines (Rh = 60-70 nm for n = 7-10 and >100 nm for n = 11 and 12). Determination of the relative binding affinity of polyamines to DNA using an ethidium bromide displacement assay showed that homologues with n = 2 and 3 as well as those with n > 7 had significantly lower DNA binding affinity compared to spermine and homologues with n = 5 and 6. These data suggest that the chemical structure of isovalent polyamines exerts a profound influence on their ability to recognize and condense DNA, and on the size of the DNA condensates formed in aqueous solution.  相似文献   

12.
DNA condensation, precipitation, and aggregation are related phenomena involving DNA-DNA interactions in the presence of multivalent cations, and studied for their potential implications in DNA packaging in the cell. Recent studies have shown that the condensation/aggregation is a prerequisite for the cellular uptake of DNA for gene therapy applications. To elucidate the ionic and structural factors involved in DNA aggregation, we studied the precipitation and resolubilization of high molecular weight and sonicated calf thymus DNA, two therapeutic oligonucleotides, and poly(dA).2Poly(dT) triplex DNA in the presence of the tetravalent polyamine spermine using a centrifugation assay, Tm measurements, and CD spectroscopy. The ability of spermine to provoke DNA precipitation was in the following order: triplex DNA > duplex DNA > single-stranded DNA. In contrast, their resolubilization at high polyamine concentrations followed a reverse order. The effective concentration of spermine to precipitate DNA increased with Na+ in the medium. Tm data indicated the DNA stabilizing effect of spermine even in the resolubilized state. CD spectroscopy revealed a series of sequential conformational alterations of duplex and triplex DNA, with the duplex form regaining the B-DNA conformation at high concentrations (approximately 200 mM) of spermine. The triplex DNA, however, remained in a Psi-DNA conformation in the resolubilized state. Chemical structural specificity effects were exerted by spermidine and spermine analogues in precipitating and resolubilizing sonicated calf thymus DNA, with N4-methyl substitution of spermidine and a heptamethylene separation of the imino groups of spermine having the maximal difference in the precipitating ability of the analogues compared to spermidine and spermine, respectively. Therapeutically important bis(ethyl) substitution reduced the precipitating ability of the analogues compared to spermine. The effect of the cationicity of polyamines was evident with the pentamines being much more efficacious than the tetramines and triamines. These results provide new insights into the mechanism of DNA precipitation by polyamines, and suggest the importance of polyamine structure in developing gene delivery vehicles for therapeutic applications.  相似文献   

13.
The possibility that phospholipid polar heads may influence Fe2+ reaction with molecular oxygen and, thus, the generation of oxygen active species was investigated. Dipalmitoyl phosphatidylcholine (DPPC) and DPPC/dipalmitoyl phosphatidic acid (DPPA) were utilized as model liposomes. Fe2+ oxidation, oxygen consumption, nitro blue tetrazolium reduction and 2-deoxyribose degradation were the parameters evaluated. Comparison of the results obtained clearly shows that the two types of polar heads differently affect iron chemistry. DPPC liposomes are ineffective. By contrast, Fe2+ oxidation by oxygen occurs in the presence of DPPC/DPPA liposomes. During this reaction, species able to reduce nitro blue tetrazolium and to degrade 2-deoxyribose are generated. The results obtained indicate that the polar heads of phospholipids, by influencing Fe2+ autoxidation, generate dangerous oxygen species which may exert an active role in the oxidation of the associated hydrophobic components of the phospholipids.  相似文献   

14.
Calcium ions that have been preloaded into isolated SR subfractions in the presence of ATP and pyrophosphate may be released upon addition of a large number of diverse pharmacologic substances in a manner that is effectively blocked by ruthenium red and other organic polyamines. Effective blocking substances include certain antibiotics (neomycin, gentamicin, streptomycin, clindamycin, kanamycin, and tobramycin), naturally occurring polyamines (spermine and spermidine), and a number of basic polypeptides and proteins (polylysine, polyarginine, certain histones, and protamine). These agents have only one feature in common: the presence of several amino groups. Ruthenium red, neomycin, spermine, and protamine all appear to act by blocking SR Ca2+ channels since unidirectional 45Ca2+ efflux from the vesicles is strongly inhibited by these agents. Functions ascribable to the SR Ca2+ pump are largely unaffected by these agents. Since inositol 1,4,5-trisphosphate is ineffective at inducing Ca2+ release under these conditions, we conclude that these polyamines may directly block SR Ca2+ channels at very low concentrations by a mechanism unrelated to effects on inositol 1,4,5-trisphosphate production.  相似文献   

15.
The responses of human umbilical-vein vascular endothelial cells in culture to the naturally occurring polyamines spermine, spermidine and putrescine, their acetyl derivatives and oxidation products were examined. In the absence of human polyamine oxidase, exposure of cells to polyamines (up to 160 microM) had no adverse effects. In the presence of polyamine oxidase, spermine and spermidine were cytotoxic, but putrescine was not. Acetylation of the aminopropyl group of spermidine or both aminopropyl groups of spermine prevented this cytotoxicity. The amino acids corresponding to the polyamines, representing a further stage of oxidation, were also without effect. The cytotoxic effects were irreversible. Use of bovine serum amine oxidase in place of the human enzyme gave qualitatively similar results.  相似文献   

16.
Poly(ethylene glycol) 6000 affected the aggregation of mixed liposomes induced by spermine. It lowered the concentration of spermine causing 50% maximal aggregation, accelerated the rate and increased the extent of aggregation. The effect was inversely proportional to the density of the acidic phospholipid in the vesicles. These effects were not due either to poly(ethylene glycol) 6000-induced permanent structural modification of the liposome or increased binding of spermine to the vesicles. These findings are discussed in relation to a decreased hydration force caused by the ability of poly(ethylene glycol) 6000 to alter the water of hydration of the phospholipid polar groups in the liposome.  相似文献   

17.
The effects of natural polyamines on cyclic AMP-mediated stimulation of amino acid transport in isolated rat hepatocytes were analyzed. Despite the fact that polyamines could directly compete with alpha-aminoisobutyric acid (AIB) for uptake, preincubation of hepatocytes with polyamines did not significantly alter basal AIB transport. The stimulatory effect of glucagon or cyclic AMP analogs was differently affected by polyamines, since it was reduced in the presence of spermine and, inversely, potentiated by spermidine, putrescine, and cadaverine. Dose-dependence analysis showed that half maximal and maximal effects occurred with 2-3 and 6-10 mM external concentrations, respectively. None of the polyamine effects could be ascribed to transstimulation or transinhibition of amino acid uptake. The inhibitory effect exerted by spermine correlated its capacity to inhibit [3H]-leucine incorporation into proteins partially. The potentiating effect of the other polyamines did not result from stabilization of newly synthesized carrier proteins. Instead, the increase in Vmax of the high affinity transport component suggested that more carriers became available, presumably because polyamines facilitated their synthesis by interacting directly with one or several steps controlled by cyclic AMP. Polyamines appear to represent a new class of factors capable of modulating the cyclic AMP-mediated stimulation of amino acid transport, in hepatocytes.  相似文献   

18.
Spermidine and spermine are found in unfertilized eggs of the sea urchin, Hemicentrotuspulcherrimus. Putrescine becomes detectable and concentrations of spermidine and spermine increase in the eggs upon fertilization. Then, concentrations of these polyamines decrease after respective peaks in polyamine concentrations. The peaks in the concentrations are found at 15 minutes post fertilization for putrescien, at 30 minutes for spermidine and at 30–40 minutes for spermine respectively. Levels of polyamines elevate again and reduce after the 2nd concentration peaks of respective compounds, and then the first cleavage of the eggs takes place. Cyclic change in each polyamine concentration is also observed after the first cleavage, and egg cleavage occurs at decreasing phase of polyamine concentrations.  相似文献   

19.
Polyamines are mainly transported in the blood by erythrocytes: Putrescine, spermidine and spermine can be taken up in vitro by red blood cells (RBC); their entry is greater in the presence of serum than in the presence of plasma, and spermine entry is lower than that observed for the two other polyamines. In the presence of serum, the affinity of RBC for spermidine is 30 fold greater than that for putrescine. The majority of RBC polyamines are present in the hemolysate and are not complexed to high molecular weight material. At + 4 degrees C the polyamine uptake is considerably reduced and for putrescine and spermine practically non existent, but it seems that it is internalization rather than binding which constitutes the dependent step. Though intracellular spermidine and spermine levels reflect differences in uptake rather than in outward flux across the cell membrane, the values of putrescine appear to be the resultant of influx and efflux. The presence of specific receptor sites for polyamines visualized by SEM on the surface of RBC using latex-putrescine spheres, confirms the results obtained with labelled polyamines. Therefore, only the understanding of the polyamine repartition inside the blood compartments would permit the clinical use of those molecules as non statistical tumor markers.  相似文献   

20.
Squalamine and three aminosterol analogs have been shown to inhibit bacterial cell growth and induce lysis of large unilamellar phospholipid vesicles. The analogs differ in the identity of the polyamine attached at C3 of the sterol, and the stereochemistry of a hydroxyl substituent at C7. Analogs with a tetraammonium spermine polyamine are somewhat more active than analogs with a shorter trisammonium spermidine polyamine, and analogs with an axial (α) hydroxyl substituent at C7 are more active than analogs with the corresponding equatorial (β) hydroxyl group. There is some variability noted; the 7β-OH spermine analog is the most active compound against Escherichia coli, but the least effective against Pseudomonas aeruginosa. Lytic activity correlates well with antimicrobial activity of the compounds, but the lytic activity varies with the phospholipid composition of the vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号