首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard Karplus equation for calculating 3 J coupling constants from any given dihedral angle requires three empirical coefficients be determined that relate to the magnitudes of three modes of the angle dependency of 3 J. Considering cosine modes only (bimodal, unimodal and baseline component), Karplus curves are generally symmetric with respect to the sign of the angle argument. Typically, their primary and secondary maxima differ in amplitude, whereas the two minima are of equal depth. However, chiral molecular topologies, such as those surrounding the main-chain and side-chain torsions in amino-acid residues, preclude, as regards substituent positioning, exact mirror-image conformations from being formed—for any given torsion-angle value. It is therefore unlikely that 3 J couplings assume identical values for the corresponding positive and negative dihedral angles. This suggests that a better empirical fit of the torsion-angle dependency of 3 J could be obtained when removing the constraint of symmetrically identical coupling constants. A sine term added to the Karplus equation allows independent modelling of both curve minima typically located near dihedral-angle values of +90° and −90°. Revisiting an extensive 3 J coupling dataset previously recorded to determine the side-chain torsions χ1 in the protein flavodoxin, the asymmetric Karplus model accomplishes a more accurate fit to the experimental data. Asymmetries revealed in the angle dependencies exceed the experimental precision in determining 3 J. Accounting for these effects helps improve molecular models. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
A pair of 3D HNCO-based experiments have been developed with the aim of optimizing the precision of measurement of 1JNH couplings. Both pulse sequences record 1JNH coupling evolution during the entire constant time interval that 15N magnetization is dephasing or rephasing with respect to the directly bonded 13C′ nucleus, with 15N13C′ multiple quantum coherence maintained during the 13C′ evolution period. The first experiment, designed for smaller proteins, produces an apparent doubling of the 1JNH coupling without any accompanying increases in line width. The second experiment is a J-scaled TROSY-HNCO experiment in which the 1JNH coupling is measured by frequency difference between resonances offset symmetrically about the position of the downfield component of the 15N doublet (i.e. the TROSY resonance). This experiment delivers significant gains in precision of 1JNH coupling measurement compared to existing J-scaled TROSY-HNCO experiments. With the proper choice of acquisition parameters and sufficient sensitivity to acquire a 3D TROSY-HNCO experiment, it is shown that 1JNH couplings can be measured with a precision which approaches or exceeds the precision of measurement with which the frequency of the TROSY resonance itself can be determined.  相似文献   

3.
High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C′, 13Cα and 13Cβ sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T 2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T 2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13T 2′ times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions.  相似文献   

4.
Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak 3 \textJ\textCa\textCa ^{ 3} {\text{J}}_{{{\text{C}}\alpha {\text{C}}\alpha }} coupling. These pulse sequences, which resemble recently described 13C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in 1H2O, and use 1H excitation and detection. These experiments require alternate 13C-12C labeling together with perdeuteration, which allows utilizing the small 3 \textJ\textCa\textCa ^{ 3} {\text{J}}_{{{\text{C}}\alpha {\text{C}}\alpha }} scalar coupling that is otherwise masked by the stronger 1JCC couplings in uniformly 13C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the 1 3 \textCa ^{ 1 3} {\text{C}}^{\alpha } of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i1, i + 1 and i2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOCSY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the 15N-1H spin pair of residue i to adjacent amide protons and nitrogens at positions i2, i1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments.  相似文献   

5.
Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U–13C,15N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the 13C–13C and 13C–1H spin coupling networks (Kainosho et al. in Nature 440:52–57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3-2H2; δ1,ε3,η2-13C3; ε1-15N]-indole ring ([12Cγ, 12Cε2] SAIL-Trp), which provides a more robust way to correlate the 1Hβ, 1Hα, and 1HN to the 1Hδ1 and 1Hε3 through the intra-residue NOEs. The assignment of the 1Hδ1/13Cδ1 and 1Hε3/13Cε3 signals can thus be transferred to the 1Hε1/15Nε1 and 1Hη2/13Cη2 signals, as with the previous type of SAIL-Trp, which has an extra 13C at the Cγ of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was 1Hβ2 in this experiment, one can determine the side-chain conformation of the Trp residue including the χ2 angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [12Cγ,12Cε2] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.  相似文献   

6.
Pressure-dependent 13C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH3, CH2 and CH carbon shifts change on average by +0.23, −0.09 and −0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the γ-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual 13Cα shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas 13Cβ shifts retain significant dependence on local compression, making them less useful as structural restraints.  相似文献   

7.
Natural variability in stable isotope ratios and element concentrations in calcified structures of fish (e.g. scales and otoliths) has provided biogeochemical ‘tags’ for studying origins and movements of marine species, but has been little used in freshwater studies. We examine whether variability in scale δ15N and δ13C values of Salmo trutta L., could provide a tag of fish over small spatial scales in a small river catchment (River Dee, U.K.) and compared their performance as tags with that of scale/otolith element concentrations. Whole scale δ15N and δ13C values differed among six study sites and fish could be classified to their site of origin with a high degree of accuracy. Classifying fish to their site of capture was marginally superior using scale δ15N and δ13C values compared to that achieved using Sr, Mn, Ba and Mg in scale hydroxyapatite or otolith aragonite. Scale δ15N and δ13C values could therefore provide non-lethally collectable biogeochemical tags superior in performance to element concentrations in otoliths and scales. A comprehensive study of δ15N and δ13C values within freshwater systems would develop our understanding of factors influencing geographical variability in baseline δ15N and δ13C signatures.  相似文献   

8.
The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal’s diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Δ13C = δ13Ctissues − δ13Cdiet and Δ15N = δ15Ntissues − δ15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from −0.64 to 1.77‰ in the turtles’ tissues. These values are lower than the commonly assumed average 3.4‰ discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.  相似文献   

9.
We have developed NMR spectroscopic methods to investigate the tyrosines within Bacillus circulans xylanase (BcX). Four slowly exchanging buried tyrosine hydroxyl protons with chemical shifts between 7.5 and 12.5 ppm were found using a long-range 13C-HSQC experiment that exploits the 3JCH coupling between the ring 1Hη and 13Cε nuclei. The NMR signals from these protons were assigned via 13C-tyrosine selective labelling and a suite of scalar and 13C,15N-filtered/edited NOE correlation spectra. Of the fifteen tyrosines in BcX, only the buried Tyr79 and Tyr105 showed four distinct, rather than two averaged, signals from ring 13C–1H pairs, indicative of slow flipping on the chemical shift timescale. Ring flipping rate constants of ~10 and ~0.2 s−1 were measured for the two residues, respectively, using a 13C longitudinal exchange experiment. The hydrogen bonding properties of the Tyr79 and Tyr105 hydroxyls were also defined by complementary NOE and J-coupling measurements. The 1Hη hydrogen–deuterium exchange rate constants of the buried tyrosines were determined from 13C/15N-filtered spectra recorded as a function of pH. These exchange rate constants correspond to estimated protection factors of ~104–108 relative to a random coil tyrosine. The phenolic sidechain pK a values were also measured by monitoring their pH-dependent 13Cζ chemical shifts via 1Hε/δ(13Cε)13Cζ correlation spectra. Exposed tyrosines had unperturbed pK a values of ~10.2, whereas buried residues remained predominantly neutral at or even above pH 11. Combined with selective isotope labelling, these NMR experiments should prove useful for investigating the structural and electrostatic properties of tyrosines in many interesting proteins.  相似文献   

10.
In recent years, solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) has been growing into an important technique to study the structure of membrane proteins, amyloid fibrils and other protein preparations which do not form crystals or are insoluble. Currently, a key bottleneck is the assignment process due to the absence of the resolving power of proton chemical shifts. Particularly for large proteins (approximately >150 residues) it is difficult to obtain a full set of resonance assignments. In order to address this problem, we present an assignment method based upon samples prepared using [1,3-13C]- and [2-13C]-glycerol as the sole carbon source in the bacterial growth medium (so-called selectively and extensively labelled protein). Such samples give rise to higher quality spectra than uniformly [13C]-labelled protein samples, and have previously been used to obtain long-range restraints for use in structure calculations. Our method exploits the characteristic cross-peak patterns observed for the different amino acid types in 13C-13C correlation and 3D NCACX and NCOCX spectra. An in-depth analysis of the patterns and how they can be used to aid assignment is presented, using spectra of the chicken α-spectrin SH3 domain (62 residues), αB-crystallin (175 residues) and outer membrane protein G (OmpG, 281 residues) as examples. Using this procedure, over 90% of the Cα, Cβ, C′ and N resonances in the core domain of αB-crystallin and around 73% in the flanking domains could be assigned (excluding 24 residues at the extreme termini of the protein). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Quantum mechanical calculations are presented that predict that one-bond deuterium isotope effects on the 15N chemical shift of backbone amides of proteins, 1Δ15N(D), are sensitive to backbone conformation and hydrogen bonding. A quantitative empirical model for 1Δ15N(D) including the backbone dihedral angles, Φ and Ψ, and the hydrogen bonding geometry is presented for glycine and amino acid residues with aliphatic side chains. The effect of hydrogen bonding is rationalized in part as an electric-field effect on the first derivative of the nuclear shielding with respect to N–H bond length. Another contributing factor is the effect of increased anharmonicity of the N–H stretching vibrational state upon hydrogen bonding, which results in an altered N–H/N–D equilibrium bond length ratio. The N–H stretching anharmonicity contribution falls off with the cosine of the N–H···O bond angle. For residues with uncharged side chains a very good prediction of isotope effects can be made. Thus, for proteins with known secondary structures, 1Δ15N(D) can provide insights into hydrogen bonding geometries. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The species composition, abundance, and isotopic signature of millipedes (Myriapoda, Diplopoda) were investigated in seven biotopes of Kaluzhskie Zaseki State Nature Reserve. Nine Diplopoda species were found in total, and the local species diversity (within a sampling plot) reached seven species. The Diplopoda tissues were similar to the plant litter in the isotopic composition of nitrogen (δ15N was by 0.4‰ higher, on average), but were strongly enriched in heavy carbon (δ13C was by 4‰ higher, on average). Removal of mineral carbon from the cuticle reduced δ13C of Diplopoda by about 1.4‰ on average. Differences in the δ15N and δ13C values between the species did not exceed 2.5‰. Differences in the isotopic compositions of the considered species were small, and, it is impossible to distinguish particular trophic guilds in the Diplopoda community. Analysis of the published data confirmed that isotopic differentiation of millipedes was much less pronounced than in other investigated groups of soil animals. Hence, millipedes of the deciduous forest form a uniform trophic group.  相似文献   

13.
The dependence of the 13C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel β-sheet model peptide represented by the amino acid sequence Ac-(Ala)3-X-(Ala)12-NH2 where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel β-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the 13C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel β-sheet, there is (i) good agreement between computed and observed 13Cα and 13Cβ chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed 13Cα and 13Cβ chemical shifts as a function of χ1 for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed 13Cα chemical shifts on χξ (with ξ ≥ 2) compared to χ1 for eleven out of seventeen residues. Our results suggest that predicted 13Cα and 13Cβ chemical shifts, based only on backbone (φ,ψ) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into account. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
Foliar δ15N, %N and %P in the dominant woody and herbaceous species across nutrient gradients in New Zealand restiad (family Restionaceae) raised bogs revealed marked differences in plant δ15N correlations with P. The two heath shrubs, Leptospermum scoparium (Myrtaceae) and Dracophyllum scoparium (Epacridaceae), showed considerable isotopic variation (−2.03 to −15.55‰, and −0.39 to −12.06‰, respectively) across the bogs, with foliar δ15N strongly and positively correlated with P concentrations in foliage and peat, and negatively correlated with foliar N:P ratios. For L. scoparium, the isotopic gradient was not linked to ectomycorrhizal (ECM) fractionation as ECMs occurred only on higher nutrient marginal peats where 15N depletion was least. In strong contrast, restiad species (Empodisma minus Sporadanthus ferrugineus, S. traversii) showed little isotopic variation across the same nutrient gradients. Empodisma minus and S. traversii had δ15N levels consistently around 0‰ (means of −0.12‰ and +0.15‰ respectively), and S. ferrugineus, which co-habited with E. minus, was more depleted (mean −4.97‰). The isotopic differences between heath shrubs and restiads were similar in floristically dissimilar bogs and may be linked to contrasting nutrient demands, acquisition mechanisms, and root morphology. Leptospermum scoparium shrubs on low nutrient peats were stunted, with low tissue P concentrations, and high N:P ratios, suggesting they were P-limited, which was probably exacerbated by markedly reduced mycorrhizal colonisations. The coupling of δ15N depletion and %P in heath shrubs suggests that N fractionation is promoted by P limitation. In contrast, the constancy in δ15N of the restiad species through the N and P gradients suggests that these are not suffering from P limitation.  相似文献   

15.
An extension to HN(CO-α/β-N,Cα-J)-TROSY (Permi and Annila in J Biomol NMR 16:221–227, 2000) is proposed that permits the simultaneous determination of the four coupling constants 1 J N′(i)Cα(i), 2 J HN(i)Cα(i), 2 J Cα(i−1)N′(i), and 3 J Cα(i−1)HN(i) in 15N,13C-labeled proteins. Contrasting the original scheme, in which two separate subspectra exhibit the 2 J CαN′ coupling as inphase and antiphase splitting (IPAP), we here record four subspectra that exhibit all combinations of inphase and antiphase splittings possible with respect to both 2 J CαN′ and 1 J N′Cα (DIPAP). Complementary sign patterns in the different spectrum constituents overdetermine the coupling constants which can thus be extracted at higher accuracy than is possible with the original experiment. Fully exploiting data redundance, simultaneous 2D lineshape fitting of the E.COSY multiplet tilts in all four subspectra provides all coupling constants at ultimate precision. Cross-correlation and differential-relaxation effects were taken into account in the evaluation procedure. By applying a four-point Fourier transform, the set of spectra is reversibly interconverted between DIPAP and spin-state representations. Methods are exemplified using proteins of various size.  相似文献   

16.
Hobbie EA  Jumpponen A  Trappe J 《Oecologia》2005,146(2):258-268
Nitrogen isotopes (15N/14N ratios, expressed as δ15N values) are useful markers of the mycorrhizal role in plant nitrogen supply because discrimination against 15N during creation of transfer compounds within mycorrhizal fungi decreases the 15N/14N in plants (low δ15N) and increases the 15N/14N of the fungi (high δ15N). Analytical models of 15N distribution would be helpful in interpreting δ15N patterns in fungi and plants. To compare different analytical models, we measured nitrogen isotope patterns in soils, saprotrophic fungi, ectomycorrhizal fungi, and plants with different mycorrhizal habits on a glacier foreland exposed during the last 100 years of glacial retreat and on adjacent non-glaciated terrain. Since plants during early primary succession may have only limited access to propagules of mycorrhizal fungi, we hypothesized that mycorrhizal plants would initially be similar to nonmycorrhizal plants in δ15N and then decrease, if mycorrhizal colonization were an important factor influencing plant δ15N. As hypothesized, plants with different mycorrhizal habits initially showed similar δ15N values (−4 to −6‰ relative to the standard of atmospheric N2 at 0‰), corresponding to low mycorrhizal colonization in all plant species and an absence of ectomycorrhizal sporocarps. In later successional stages where ectomycorrhizal sporocarps were present, most ectomycorrhizal and ericoid mycorrhizal plants declined by 5–6‰ in δ15N, suggesting transfer of 15N-depleted N from fungi to plants. The values recorded (−8 to −11‰) are among the lowest yet observed in vascular plants. In contrast, the δ15N of nonmycorrhizal plants and arbuscular mycorrhizal plants declined only slightly or not at all. On the forefront, most ectomycorrhizal and saprotrophic fungi were similar in δ15N (−1 to −3‰), but the host-specific ectomycorrhizal fungus Cortinarius tenebricus had values of up to 7‰. Plants, fungi and soil were at least 4‰ higher in δ15N from the mature site than in recently exposed sites. On both the forefront and the mature site, host-specific ectomycorrhizal fungi had higher δ15N values than ectomycorrhizal fungi with a broad host range. From these isotopic patterns, we conclude:(1) large enrichments in 15N of many ectomycorrhizal fungi relative to co-occurring ectomycorrhizal plants are best explained by treating the plant-fungal-soil system as a closed system with a discrimination against 15N of 8–10‰ during transfer from fungi to plants, (2) based on models of 15N mass balance, ericoid and ectomycorrhizal fungi retain up to two-thirds of the N in the plant-mycorrhizal system under the N-limited conditions at forefront sites, (3) sporocarps are probably enriched in 15N by an additional 3‰ relative to available nitrogen, and (4) host-specific ectomycorrhizal fungi may transfer more N to plant hosts than non-host-specific ectomycorrhizal fungi. Our study confirms that nitrogen isotopes are a powerful tool for probing nitrogen dynamics between mycorrhizal fungi and associated plants.  相似文献   

17.
An approach for generating efficient RNnnS, nk {\rm{RN}}_{n}^{\nu_{\rm{S}}, {\nu_{\rm{k}}}} symmetry-based dual channel RF pulse schemes for γ-encoded broadband 15N–13C dipolar recoupling at high magic angle spinning frequencies is presented. The method involves the numerical optimisation of the RF phase-modulation profile of the basic “R” element so as to obtain heteronuclear double quantum dipolar recoupling sequences with satisfactory magnetisation transfer characteristics. The basic “R” element was implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by a RF phase and amplitude values. The performance characteristics of the sequences were evaluated via numerical simulations and 15N–13C chemical shift correlation experiments. Employing such 13C–15N double-quantum recoupling sequences and the multiple receiver capabilities available in the current generation of NMR spectrometers, the possibility to simultaneously acquire 3D NCC and CNH chemical shift correlation spectra is also demonstrated.  相似文献   

18.
3 S4]+, S=1/2, composed of three, antiferromagnetically coupled high-spin ferric ions) by continuous wave (CW) and pulsed EPR techniques: Azotobacter vinelandii ferredoxin I, Desulfovibrio gigas ferredoxin II, and the 3Fe forms of Pyrococcus furiosus ferredoxin and aconitase. The 35 GHz (Q-band) CW EPR signals are simulated to yield experimental g tensors, which either had not been reported, or had been reported only at X-band microwave frequency. Pulsed X- and Q-band EPR techniques are used to determine electron spin-lattice (T 1, longitudinal) relaxation times at several positions on the samples' EPR envelope over the temperature range 2–4.2 K. The T 1 values vary sharply across the EPR envelope, a reflection of the fact that the envelope results from a distribution in cluster properties, as seen earlier as a distribution in g 3 values and in 57 Fe hyperfine interactions, as detected by electron nuclear double resonance spectroscopy. The temperature dependence of 1/T 1 is analyzed in terms of the Orbach mechanism, with relaxation dominated by resonant two-phonon transitions to a doublet excited state at ∼20 cm−1 above the doublet ground state for all four of these 3Fe proteins. The experimental EPR data are combined with previously reported 57Fe hyperfine data to determine electronic spin exchange-coupling within the clusters, following the model of Kent et al. Their model defines the coupling parameters as follows: J 13=J, J 12=J(1+ε′), J 23=J(1+ε), where J ij is the isotropic exchange coupling between ferric ions i and j, and ε and ε′ are measures of coupling inequivalence. We have extended their theory to include the effects of ε′≠0 and thus derived an exact expression for the energy of the doublet excited state for any ε, ε′. This excited state energy corresponds roughly to ε J and is in the range 5–10 cm−1 for each of these four 3Fe proteins. This magnitude of the product ε J, determined by our time-domain relaxation studies in the temperature range 2–4 K, is the same as that obtained from three other distinct types of study: CW EPR studies of spin relaxation in the range 5.5–50 K, NMR studies in the range 293–303 K, and static susceptibility measurements in the range 1.8–200 K. We suggest that an apparent disagreement as to the individual values of J and ε be resolved in favor of the values obtained by susceptibility and NMR (J≳200 cm−1 and ε≳0.02 cm−1 ), as opposed to a smaller J and larger ε as suggested in CW EPR studies. However, we note that this resolution casts doubt on the accepted theoretical model for describing the distribution in magnetic properties of 3Fe clusters. Received: 23 December 1999 / Accepted: 8 March 2000  相似文献   

19.
A field experiment involving two planting densities (83,333 and 166,666 plants per ha), two cropping systems (monoculture and mixed culture) and five cowpea [Vigna unguiculata L. (Walp.)] genotypes was conducted at Nietvoorbij (33°54S, 18°14E), Stellenbosch, South Africa, to select cowpea material with superior growth and water-use efficiency (WUE). The results showed significantly higher photosynthetic rates, stomatal conductance and transpiration in leaves of plants at low density and in monoculture due to greater chlorophyll (Chl) levels relative to those at high density and in mixed culture. As a result, C concentration in leaves and the amount of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B accumulated in shoots at low density and under monoculture were also much higher. Even though no marked differences in photosynthetic rates were found between and among the five cowpea genotypes, leaf C concentration and shoot C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents differed considerably, with Sanzie exhibiting the highest C concentration and C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents in shoots, followed by Bensogla and Omondaw, while ITH98-46 and TVu1509 had the lowest shoot concentration and contents of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B. WUE (calculated as photosynthate produced per unit water molecule transpired) was significantly greater in plants at low density and monoculture relative to those at high density and in mixed culture. Isotopic analysis revealed significant differences in δ13C values of sorghum [Sorghum bicolor L. (Moench.)] and cowpea, with higher δ13C values being obtained for plants at low density and in monoculture relative to those at high density or in mixed culture. The five cowpea genotypes also showed significant differences in δ13C values, with Sanzie exhibiting the most negative value (i.e. low WUE) and ITH98-46, the least negative δ13C value (i.e. high WUE). Whether measured isotopically or from gas-exchange studies, sorghum (a C4 species) exhibited much higher WUE relative to cowpea (a C3 species). Both correlation and regression analyses revealed a positive relationship between WUE from gas-exchange studies and δ13C values from isotopic analysis of cowpea and sorghum shoots.  相似文献   

20.
The paper presents a set of two-dimensional experiments that utilize direct 13C detection to provide proton–carbon, carbon–carbon and carbon–nitrogen correlations in the bases of nucleic acids. The set includes a 13C-detected proton–carbon correlation experiment for the measurement of 13C–13C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the 13C–13C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a 13C-detected 13C–15N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon–carbon couplings and/or carbon decoupling in the direct dimension, while the S3E procedure is preferred in the indirect dimension of the carbon–nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of 13C and 15N chemical shifts and carbon–carbon and carbon–nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号