首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescent probe 9-amino-6-chloro-2-methoxy acridine was used to study the energy transduction in the thylakoid and cell membranes of the cyanobacterium Plectonema boryanum. Apart from light-driven electron transfer, the dark endogenous respiration also leads to energization resulting in an ACMA fluorescence response, that is sensitive to the electron flow inhibitor 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, to the energy transfer inhibitors dicyclohexylcarbodiimide and venturicidine and to the uncoupler 5-chloro-3-t-butyl-2-chloro-4-nitrosalicylanilide.In spheroplasts, in which the cell membranes have lost their capacity to maintain a proton gradient, the respiration-and light-induced ACMA fluorescence changes (quenching) are similar to those in chloroplasts. In intact cells a combination of reversible quenching and enhancement of ACMA fluorescence was found. This dualistic behaviour is supposedly caused by an opposite orientation of the thylakoid and cell membranes. ACMA quenching at the level of the thylakoids was obtained either by respiratory or photosynthetic electron transfer and gave similar responses to those obtained in the spheroplasts. The slower ACMA fluorescence enhancement, only observed in cells with intact cell membranes, also evoked by both respiration and light-induced energization is sensitive to the compounds mentioned above and in addition to KCN.Our results support the view [8] that dark oxidation of substrates by O2 proceeds via the thylakoid membrane and terminates at a CN- sensitive oxidase located in the cell membrane which requires the involvement of a mobile cytoplasmic redox mediator.Abbreviations ACMA 9-amino-6-chloro-2-methoxy acridine - chl a chlorophyll a - DBMIB 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DNP dinitrophenol - DNP-INT dinitrophenyl ether of 2-iodo-4-nitrothymol - FCCP carbonylcyanide-p-trifluoro-methoxy phenylhydrazone - S-13 5-chloro-3-t-butyl-2-chloro-4-nitrosalicylanilide - tricine N-2 (2-Hydroxy-1, 1-bis (hydroxymethyl) ethyl)-glycine - Tris Tris (hydroxymethyl) amino methane  相似文献   

2.
The relaxation of the non-photochemical quenching of chlorophyll fluorescence has been investigated in cells of the green alga Dunaliella following illumination. The relaxation after the addition of DCMU or darkening was strongly biphasic. The uncoupler NH4Cl induced rapid relaxation of both phases, which were therefore both energy-dependent quenching, qE. The proportion of the slow phase of qE increased at increasing light intensity. In the presence of the inhibitors rotenone and antimycin the slow phase of qE was stabilised for in excess of 15 min. NaN3 inhibited the relaxation of almost all the qE. The implications of these results are discussed in terms of the interpretation of the non-photochemical quenching of chlorophyll fluorescence in vivo and the mechanism of qE.Abbreviations PS II Photosystem II - qQ photochemical quenching of chlorophyll fluorescence - qNP non-photochemical quenching of chlorophyll fluorescence - qE energy-dependent quenching of chlorophyll fluorescence - F m maximum level of chlorophyll fluorescence for dark adapted cells - F m level of fluorescence at any time when qQ is zero  相似文献   

3.
The higher the incubation temperature, the higher the light intensity that membrane vesicles of the thermophilic cyanobacterium Synechococcus 6716 require for the saturation of O2-production. If membrane vesicles are incubated at temperatures at which intact cells are growing optimally, photosynthetic O2-production and membrane energization decrease rapidly, suggesting that the thermophilic properties are rapidly lost. If membrane integrity is maintained (spheroplasts) the harmful effect of higher temperatures is much less. The effects of 2,5-dibromo-3-methyl-6-isopropyl-p-benzo-quinone (DBMIB), 5-chloro-3-t-butyl-2-chloro-4-nitrosalicylanilide (S-13), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and N,N-dicyclohexylcarbodiimide (DCCD) are the same as in chloroplasts, be it that DCCD acts as an electron transfer inhibitor at higher concentrations. The supposed alternative site of DCMU inhibition in cyanobacteria is rejected.Spheroplasts show a reversible energy-dependent fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine (ACMA) caused by illumination. ATP hydrolysis only give rise to fluorescence quenching in membrane vesicles. Long incubation at higher temperatures reduces the fluorescence quenching of membrane vesicles and spheroplasts, the latter being more stable than the former.Abbreviations 9AA 9-aminoacridine - ACMA 9-amino-6-chloro-2-methoxyacridine - Chl chlorophyll - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD N,N-dicyclohexylcarbodiimide - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - DCP 1,5-diphenylcarbazide - PMS methyl-phenazoniummethosulfate - PS-I photosystem I - PS-II photosystem II - S-13 5-chloro-3-t-butyl-2 chloro-4-nitrosalicylanilide  相似文献   

4.
The light-induced proton efflux and active carbon uptake are inhibited by mercury and cadmium ions in Anabaena flos-aquae. The inhibitory effects of these heavy metal ions are reversed by 40 mM concentration of sodium. Here we report that light-induced proton efflux is sodium-dependent which leads to a characteristic enhancement in the rate of photosynthetic oxygen generation and carbon fixation. A low concentration (10 M) of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) significantly inhibited the rate of oxygen generation while 10 M carbonyl cyanide-m-chlorophenylhydrazone (CCCP) completely blocked the oxygen generation activity in the organism. The chlorophyll-a fluorescence yield indicates that little fluorescence quenching occurred in the absence of sodium ion. Increasing the extracellular sodium ion accelerated both the initial rate and the extent of fluorescence quenching. These results support the assumption that metal-induced inhibition of the photosynthetic machinery may be mediated by the movement of protons.  相似文献   

5.
A modified fluorescent probe UFAA AAT CTC CGC CGC was synthesized using the nucleoside analogue 3′-O-(N,N′-diisopropylamino-2-cyanoethoxyphosphinyl)-5′-O-(4,4′-dimethoxytrityl)-2′-O-(dansyl-1-sulfonamidohexylaminocarbonyl)uridine for hybridization studies with perfectly matched (U/A) complementary DNA and with a DNA strand having similar G-rich telomeric units at their 3′-ends. Data on the thermal stability and decrease in fluorescence intensity due to the presence of dG units clearly demonstrated the potential application of this approach in DNA diagnostics in homogeneous hybridization assays. The text was submitted by the authors in English.  相似文献   

6.
The filamentous cyanobacterium Oscillatoria chalybea grows phototrophically on a mineral medium in the presence of either nitrate or ammonium ions as nitrogen source at similar growth rates. In the absence of any combined nitrogen source in the medium the cyanobacterium also grows, although at a reduced growth rate. The steady state rate of oxygen evolution by filaments from these three culture conditions is approximately constant if compared on an equal chlorophyll basis. Qualitative differences, however, emerge, if transient phenomena, e.g. the oxygen gush, are investigated. Only nitrate-and nitrogen-free-grown cultures show an oxygen gush, whereas ammonium sulfate-grown cultures do not show this phenomenon. Fluorescence induction in O. chalybea shows a fast monophasic rise, comparable to the fluorescence rise curves of higher plant chloroplasts in the presence of dithionite. The steady state level of fluorescence in ammonium sulfate-grown cells is up to seven times higher than in nitrate-grown cells when compared on an equal chlorophyll basis. In ammonium sulfate-grown cells, DCMU (N,N-3,4-Dichlorophenyl dimethylurea) causes a further increase in fluorescence level. In nitrate-grown cyanobacteria, however, the effect of DCMU consists of a decrease of the steady state level of fluorescence. In context with earlier research on Anabaena cylindrica, another filamentous cyanobacterium, it appears that the type of the nitrogen source used for growth determines the main location of the DCMU-block in this organism. It thus appears that in O. chalybea the site of DCMU inhibition lies on the oxygen-evolving side of photosystem II, if the organism is grown on nitrate. If grown on ammonium sulfate, no substantial difference of the location of the inhibition site when compared to algae or higher plant chloroplasts is found.Thylakoid preparations of O. chalybea perform the usual Hill reactions with ferricyanide, p-benzoquinone or silicomolybdate as electron acceptors. In each case it is seen that with thylakoids of nitrate-grown cells the steady-state level of fluorescence is lowered by DCMU in the presence of these acceptors, which should be the case, if DCMU inhibits electron transfer on the donor side of photosystem II. According to the literature silicomolybdate accepts electrons mainly before the DCMU-block in higher plant chloroplasts. Hence, in higher plants this reaction is mainly DCMU-insensitive. In thylakoids of O. chalybea, however, the Hill reaction with silicomolybdate is DCMU-sensitive which provides further evidence that the DCMU-block is on the oxygen-evolving side of photosystem II in O. chalybea provided the cells have been grown on nitrate.Abbreviations DCMU N-N-3,4-Dichlorophenyl dimethylurea  相似文献   

7.
A specific method was developed for monitoring the concentration of cyanobacteria (blue-green algae) before waterblooms, based on their characteristics ofin vivo fluorescence. The excitation and emission spectra of cyanobacteria are very different from those of eukaryotic algae, due to the importance of phycocyanin, rather than chlorophylla, in determining the fluorescence characteristics. Our results, based on four cyanobacteria:Microcystis aeruginosa, Anabaena cylindrica, Phormidium tenue andSpirulina platensis, indicate that excitation at 620 nm and its emission at 645 nm is a sensitive and specific method for their detection. Furthermore, the addition of 10 M photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) induced only 3% increase in phycocyanin fluorescence, suggesting that this measurement is almost independent of the ongoing rate of photosynthesis.Author for correspondence  相似文献   

8.
In this study, two extracting methods (sonication and dispersing) and three solvents (90% acetone, N,N′-dimethylformamide and methanol) were compared for their ability to extract chlorophyll a of freshwater phytoplankton. Measurements were performed with both spectrophotometry and high-performance liquid chromatography. Results showed that (i) cell disruption is essential and that (ii) the method of cell disruption and solvent applied differed significantly. Dispersing in acetone surpassed all other combinations. Sonication in N,N′-dimethylformamide was found less effective. N,N′-dimethylformamide and methanol seem to promote the formation of degradation products (chlorophyllide a, allomer, epimer and phaeophytin a) which lead to overestimates of chlorophyll a of about 10% by means of spectrophotometry.  相似文献   

9.
Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1: 1 predominates under low light but is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher qN) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697–698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.Abbreviations D1 the atrazine-binding 32 kDa protein of the PS II reaction centre core - D1:1 the D1 protein constitutively expressed during acclimated growth in Synechococcus sp. PCC 7942 - D1:2 an alternate form of the D1 protein induced under excess excitation in Synechococcus sp. PCC 7942 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fo minimal fluorescence in the dark-adapted state - Fo minimal fluorescence in a light-adapted state - FM maximum fluorescence with all quenching mechanisms at a minimum, measured in presence of DCMU - FM maximal fluorescence in a light-adapted state, measured with a saturating flash - FMdark maximal fluorescence in the dark-adapted state - FV variable fluorescence in a light-adapted state (FM-Fo) - PAM pulse amplitude modulated fluorometer - qN non-photochemical quenching of PS II fluorescence - qN (dark) qN in the dark adapted state - qP photochemical quenching of fluorescence  相似文献   

10.
Activity of the photosynthetic apparatus of synchronized cultures was studied with the xanthophycean alga Bumilleriopsis filiformis, following the kinetics of fluorescence induction and photooxidation of cytochrome f (= cytochrome c-553) of intact cells. During the beginning of the cell-division phase, minimum cellular photosynthetic activity is observed and a maximum after its completion, which is accompanied by corresponding changes in Hill reaction activity and re-reduction of cytochrome f by photosystem II light. At minimum activity, the level of steady state fluorescence was higher than at the maximum. This is due, at least in part, to the diminished electron flow between the two photosystems seemingly caused by decreased photosystem I activity. This explanation was suported by the kinetics of cytochrome-f photooxidation.Thus, electron transport activity of both photosystems appears to vary during the cell cycle.Abbreviations pBQ p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP dichlorophenolindophenol - MV methylviologen (paraquat) - Q fluorescence quencher (in photosystem II)  相似文献   

11.
The quenching of variable fluorescence yield (qN) and the quenching of dark level fluorescence yield (q0) directly atributable to high-energy-state fluorescence quenching (qE) was studied to distinguish between energy dissipation in the antenna and light harvesting complexes (antenna quenching) and energy dissipation at the reaction centres (reaction centre quenching). A consistent relationship was obtained between qN and q0 in barley leaves, the green alga Dunaliella C9AA and in pea thylakoids with 2,3,5,6-tetramethyl-p-phenylene diamine (DAD) as mediator of cyclic electron flow around PS 1. This correlated well with the relationship obtained using m-dinitrobenzene (DNB), a chemical model for antenna quenching, to quench fluorescence in Dunaliella C9AA or pea thylakoids. The results also correlated reasonably well with theoretical predictions by the Butler model for antenna quenching, but did not correlate with the predictions for reaction centre quenching. It is postulated that qE quenching therefore occures in the antenna and light harvesting complexes, and that the small deviation from the Butler prediction is due to PS 2 heterogeneity.Abbreviations 9-aa 9-aminoacridine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA Ethylenediaminetetra-acetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid - Mes 2-(N-morpholino) prophanesulfonate - PS 1 photosystem 1 - PS 2 photosystem 2 - QA and QB primary and secondary stable electron acceptors of photosystem 2 - qN non-photochemical fluorescence quenching coefficient - qE high-energy-state fluorescence quenching coefficient - q0 quenching coefficient for F0 - F0 dark level fluorescence yield - Fm maximum fluorescence yield - Fv variable fluorescence yield - Fv/Fm ratio of variable to total fluorescence yield - DAD 2,3,5,6-tetramethyl-p-phenylene diamine - DNB m-dinitrobenzene  相似文献   

12.
Changes in the content of exometabolites excreted by the cyanobacterium Nostoc insulare during batch cultivation were determined. During linear growth, only the non-toxic compound N,N′-(4,5-dimethyl-1,2-phenylene)-bis-acetamide was detectable in appreciable quantities in the medium, whereas during stationary growth the antimicrobial and cytotoxic exometabolites 4,4′-dihydroxybiphenyl and 9H-pyrido(3,4-b)indole (norharmane) were also present to an increasing degree. Hence it is proposed that biosynthesis of N,N′-(4,5-dimethyl-1,2-phenylene)bis-acetamide in N. insulare is associated with cell proliferation and primary metabolism of this organism. 4,4′-Dihydroxybiphenyl and norharmane, however, are proposed to be products of secondary metabolism that are excreted by N. insulare primarily under nutrient-restricted conditions and under increased pressure of competition with other organisms.  相似文献   

13.
The purpose of the study was to determine inhibitory effect of calcium chelator; ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) on flowering of a short-day (SD) plant Pharbitis nil. It was found that 20 mM solution of EGTA applied on cotyledons of 5-d-old P. nil seedlings four hours before the start of 16-h-long induction night decreased the flowering response by 55% compared to the control plants not treated with this Ca2+ chelator. It also caused a very significant decrease of photosynthesis rate, transpiration rate and stomatal conductance both in light and darkness conditions. The results of this study confirm earlier hypothesis suggesting the effect of Ca2+ and its modulators on P. nil flowering is due to their influence on the stomata.  相似文献   

14.
Light transiently depolarizes the membrane of growing leaf cells. The ionic basis for changes in cell membrane electrical potentials in response to light has been determined separately for growing epidermal and mesophyll cells of the argenteum mutant of pea (Pisum sativum L.). In mesophyll cells light induces a large, transient depolarization that depends on the external Cl concentration, is unaffected by changes in the external Ca2+ or K+ concentration, is stimulated by K+-channel blockers tetraethylammonium (TEA+) and Ba2+, and is inhibited by 3-(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU). In isolated epidermal tissue, light induces a small, transient depolarization followed by a hyperpolarization of the membrane potential. The depolarization is enhanced by increasing the external Ca2+ concentration and by addition of Ba2+, and is not sensitive to DCMU. Epidermal cells in contact with mesophyll display a depolarization resembling the response of the underlying mesophyll cells. The light-induced depolarization in mesophyll cells seems to be mediated by an increased efflux of Cl while the membrane-potential changes in epidermal strips reflect changes in the fluxes of Ca2+ and in the activity of the proton-pumping ATPase.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - CCCP carbonylcyanide m-chlorophenylhydrazone - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - LID e light-induced depolarization in epidermal cells - LID m light-induced depolarization in mesophyll cells - LIH light-induced hyperpolarization - TEA+ tetraethylammonium Ecotrans paper #43. This research was supported by National Science Foundation grants DCB-8903744 and MCB-9220110 to E.V.  相似文献   

15.
Inactivation of the nitrate-reducing system in whole cells of Chlorella vulgaris Bejerinck by darkening, nitrogen starvation, ammonium, or cycloheximide brings cells into a state with a high yield of the millisecond-delayed fluorescence of chlorophyll. Activation of this system by illumination, by adding glucose to dark-adapted cells or nitrate to nitrogen-starved cells brings the cells into a low-yield state. The transitions between the lowand high-yield state induced by alternating light and dark periods are suppressed by tungstate and restored by subsequent molybdate addition. The drop in the delayed-fluorescence yield upon activation of the nitrate-reducing system is associated with the decrease of the amplitude of the electrochemical proton gradient across the thylakoid membrane of the chloroplast, as evidenced by the kinetics of the light-induced adsorption changes at 520 nm. The decrease of the proton gradient may be caused by the electron flow diverting from the cyclic path in photosystem I as a result of the activation of the electron transfer from ferredoxin to nitrite.Abbreviation DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

16.
Ten dioxide species derived from N,N′-bis(alkylmethyl)-1,2-ethanediamine and N,N′-bis(alkylmethyl)-1,2-propanediamine were tested for their activity withStaphylococcus aureus, Escherichia coli andCandida albicans. A relation between the length of the alkylchain, and/or the molecule asymmetry, and the antimicrobial activity was found. Part V of the series Amine Oxides; part IV: Mlynarciket al.: Folia Microbiol. 24, 188 (1979).  相似文献   

17.
Temperature dependent changes in absorbance and fluorescence of chlorophyll a (Chl a) were analyzed in membrane fragments and in a Chl-protein complex reconstituted with lipids isolated from the cyanobacterium Anacystis nidulans. Absorbance versus temperature curves measured at 656 nm showed an inflection point at 23–24°C and at 14–16°C in the membrane fragments prepared from A. nidulans cells, grown at 39° and 25°C, respectively. Temperature-induced absorbance changes measured at 680 and 696 nm did not show clear break points. The presence of lipids was essential in order to see a clear maximum in the fluorescence versus temperature curve of Chl a in a Chl-protein complex. It is suggested that a specific form of Chl a may be associated with lipids in the thylakoid membranes and that this form of Chl a may be responsible for temperature-induced absorbance and fluorescence yield changes in this cyanobacterium.Abbreviations Chl chlorophyll - DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - SDS sodium dodecyl sulphate DPB-CIW No. 802.  相似文献   

18.
B. Schroeter 《Oecologia》1994,98(2):212-220
In situ photosynthetic activity in the green algal and the cyanobacterial photobionts of Placopsis contortuplicata was monitored within the same thallus using chlorophyll a fluorescence methods. It proved possible to show that the response to hydration of the green algal and the cyanobacterial photobionts is different within the same thallus. Measurements of the photochemical efficiency of PS II, Fv/Fm, reveal that in the dry lichen thallus photosynthetic activity could be induced in the green algal photobiont by water vapour uptake, in the cyanobacterial photobiont only if it was hydrated with liquid water. However, rates of apparent electron flow through PS II as well as rates of CO2 gas exchange were suboptimal after hydration with water vapour alone and maximum rates could only be observed when the thallus was saturated with liquid water. The differences in the waterrelated photosynthetic performance and different light response curves of apparent electron transport rate through PS II indicate that the two photobionts act highly independently of each other. It was shown that the cyanobacteria from the cephalodia in P. contortuplicata act as photobiont. The rate of electron flow through PS II was found to be saturated at 1500 mol photon m–2 s–1, despite a considerable increase of non-photochemical quenching in the green algal photobiont which is lacking in the cyanobacterial photobiont. No evidence of photoinhibition could be found in either photobiont. Pronounced competition between the green algal and the cyanobacterial thallus can be observed in the natural habitat, indicating that the symbiosis in P. contortuplicata should be regarded as a very variable adaptation to the extreme environmental conditions in the maritime Antarctic.Abbreviations DR dark respiration - ETR apparent rate of electron flow of PS II (=F/Fm×PFD) - F difference in yield of fluorescence and maximal Fm and steady state Fs under ambient light - Fo minimum level of fluorescence yield in dark-adapted state - Fo minimum level of fluorescence yield after transient darkening and far-red illumination - Fm maximum level of dark-adapted fluorescence yield - Fm maximum yield of fluorescence under ambient light - Fs yield of fluorescence at steady state - Fv difference in minimum fluorescence and maximum fluorescence in dark-adapted state - NP net photosynthesis - NPQ coefficient for non-photochemical quenching - PAR photosynthetically active radiation (400–700 nm) - PFD photon flux density in PAR - PS II photosystem II - qN coefficient for non-photochemical quenching - qP coefficient for photochemical quenching  相似文献   

19.
Bukhov NG  Heber U  Wiese C  Shuvalov VA 《Planta》2001,212(5-6):749-758
Dissipation of light energy was studied in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst., and in leaves of Spinacia oleracea L. and Arabidopsis thaliana (L.) Heynh., using chlorophyll fluorescence as an indicator reaction. Maximum chlorophyll fluorescence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated spinach leaves, as produced by saturating light and studied between +5 and −20 °C, revealed an activation energy ΔE of 0.11 eV. As this suggested recombination fluorescence produced by charge recombination between the oxidized primary donor of photosystem II and reduced pheophytin, a mathematical model explaining fluorescence, and based in part on known characteristics of primary electron-transport reactions, was developed. The model permitted analysis of different modes of fluorescence quenching, two localized in the reaction center of photosystem II and one in the light-harvesting system of the antenna complexes. It predicted differences in the relationship between quenching of variable fluorescence F v and quenching of basal, so-called F 0 fluorescence depending on whether quenching originated from antenna complexes or from reaction centers. Such differences were found experimentally, suggesting antenna quenching as the predominant mechanism of dissipation of light energy in the moss Rhytidiadelphus, whereas reaction-center quenching appeared to be important in spinach and Arabidopsis. Both reaction-center and antenna quenching required activation by thylakoid protonation but only antenna quenching depended on or was strongly enhanced by zeaxanthin. De-protonation permitted relaxation of this quenching with half-times below 1 min. More slowly reversible quenching, tentatively identified as so-called q I or photoinhibitory quenching, required protonation but persisted for prolonged times after de-protonation. It appeared to originate in reaction centers. Received: 8 April 2000 / Accepted: 31 August 2000  相似文献   

20.
On binding toVicia faba lectin, the fluorescence of 4-methylumbelliferyl-α-D-glucoPyranoside was quantitatively quenched showing that the interaction of 4-methylumbelliferyl-α-D-glucoPyranoside took Place in a binding environment. The binding of the fluorescent sugar was saccharide sPecific as evidenced by the reversal of 4-methylumbelliferyl-α-D-glucoPyranoside fluorescence quenching by D-fructose. The association constant,K a, values for the 4-methylumbelliferyl-α-D-glucoPyranoside was determined by comPetition study emPloying reversal of fluorescence quenching of 4-methylumbelliferyl-α-D-glucoPyranoside by D-fructose. TheK a value obtained for D-fructose was 1.07 ±0.03 X 104 M-1 and for 4-methylumbelliferyl-α-D-glucoPyranoside was 1.60 ±0.05 X 104 M-1 at 15°C. TheK a values of 2.51 ±0.06 X 104M-1, l.26 ±0.02 X 104 M-1 and 0.56 ±0.01 X 104M-1, resPectively at 10°, 20° and 30°C were obtained from the ChiPman equation. The relative fluorescence quenching, ΔF a, at infinite concentration of the free saccharide sites ofVicia faba lectin [P′] was 93.5% at 30°C and the binding constant for 4-methylumbelliferyl-α-D-glucoPyranoside lectin interaction as derived by Yank and Hanaguchi equation was 0.63 ±0.01 X 104M-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号