首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of cell wall anionic carbohydrate-containing polymers in Streptomyces melanosporofaciens VKM Ac-1864T and phylogenetically close organisms—S. hygroscopicus subsp. hygroscopicus VKM Ac-831T, S. violaceusniger VKM Ac-583T, S. endus VKM Ac-1331T, S. endus VKM Ac-129, and S. rutgersensis subsp. castelarensis VKM Ac-832T—have been comparatively studied by chemical and NMR spectroscopic methods. The natural polymer of a new, previously unknown structure, Kdn (3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid) with β-galactose residues at C-9, has been found in the cell walls of all the strains under study. The cell walls of all the studied organisms contain three teichoic acids (TA): a predominant TA (1,3-poly(glycerol phosphate) with N-acetylated α-glucosaminyl substitutes by C-2 of glycerol, and minor TAs, 1,3-and 2,3-poly(glycerol phosphate) polymers without substitution. Their chains have O-acetyl and O-lysyl groups. Microorganisms of the above-mentioned species differ in the number of α-glucosaminyl substitutes and in the degree of their acetylation in the predominant teichoic acid.  相似文献   

2.
The cell wall ofNocardiopsis prasina VKM Ac-1880T was found to contain two structurally different teichoic acids: unsubstituted 3,5-poly(ribitol phosphate) and l,3-poly(glycerol phosphate) substituted at position 2 by 10% with α-N-acetylglucosamine and by 5% withO-acetyl groups. The structure of the polymers was studied by chemical analysis and NMR spectroscopy. The results obtained correlate wellwith 16S rRNA sequence data and confirm the species-specificity of teichoic acids in the genusNocardiopsis.  相似文献   

3.
A new teichoic acid was identified in the cell walls of Streptomyces griseoviridis VKM Ac-622T, Streptomyces sp. VKM Ac-2091, and Actinoplanes campanulata VKM Ac-1319T. The polymer is poly(glycosylglycerol phosphate). The repeating units of the polymer, alpha-galactopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-galactopyran+ ++ osyl-(1-->1)-glycerols, are in phosphodiester linkage at C-3 of glycerol and C-6 of galactose. The structures of cell wall teichoic acids in the strains Streptomyces chryseus VKM Ac-200T and "Streptomyces subflavus" VKM Ac-484 similar in morphology and growth characteristics are also identical: 1,5-poly(ribitol phosphate) substituted at C-4(2) by 2-acetamido-2-deoxy-beta-glucopyranosyl residues and 1,3-poly(glycerol phosphate). The taxonomic aspects of these results are discussed.  相似文献   

4.
The teichoic acids (TAs) of type strains, viz. Bacillus licheniformis VKM B-511T and Bacillus pumilus VKM B-508T, as well as phylogenetically close bacteria VKM B-424, VKM B-1554, and VKM B-711 previously assigned to Bacillus pumilus on the basis of morphological, physiological, and biochemical properties, were investigated. Three polymers were found in the cell wall of each of the 5 strains under study. Strains VKM B-508T, VKM B-424, and VKM B-1554 contained polymers of the same core: unsubstituted 1,3-poly(glycerol phosphate) (TA I) and 1,3-poly(glycerol phosphate) with O-D-Ala and N-acetyl-??-D-glucosamine substituents (TA II and TA III??, respectively). The cell walls of two remaining strains contained TA I, TA II, and a poly(glycosylpolyol phosphate) with the following structure of repeating units: -6)-??-D-GlcpNAc(1??1)-snGro-(3-P-(TA III?) in ??Bacillus pumilus?? VKM B-711 (100% 16S rRNA gene similarity with the type strain of Bacillus safensis) and -6)-??-D-Galp-(1??2)-snGro-(3-P-(TA III?) in Bacillus licheniformis VKM B-511T. The simultaneous presence of three different TAs in the cell walls was confirmed by the NMR spectroscopic DOSY methods. The structure of the polymers and localization of O-D-Ala residues were investigated by the chemical and NMR spectroscopic methods.  相似文献   

5.
A hexasaccharide 1-phosphate polymer of original structure and two teichoic acids (TA) belonging to different structural types were found in Arthrobacter uratoxydans VKM Ac-1979T cell wall. The poly(hexasaccharide 1-phosphate) combines features of teichuronic acids and glycosyl 1-phosphate polymers, and its structure has never been reported earlier. Its composition includes residues of α- and β-D-glucuronic acid as well as α-D-galacto-, β-D-gluco-, α-D-mannopyranose, and 6-O-acetylated 2-acetamido-2-deoxy-α-D-glucopyranose. The phosphodiester bond in the polymer joins the glycoside hydroxyl of α-D-glucuronic acid and O6 of α-D-galactopyranose. TA 1 is β-D-glucosylated 1,3-poly(glycerol phosphate), and TA 2 is 3,6-linked poly[α-D-glucosyl-(1→2)-glycerol phosphate]. The phosphate-containing polymers were studied by chemical methods and on the basis of one-dimensional 1H-, 13C-, and 31P-NMR spectra, homonuclear two-dimensional 1H/1H COSY, TOCSY, ROESY, and heteronuclear 1H/13C HSQC, HSQC-TOCSY, HMBC, and 1H/31P HMBC experiments. The set and structure of the polymers revealed as well as the cell wall sugars (galactose, glucose, mannose, glucosamine) and glycerol can be used in microbiological practice for taxonomic purposes.  相似文献   

6.
Cell walls of three type strains of the Bacillus subtilis group, Bacillus mojavensis VKM B-2650, Bacillus amyloliquefaciens subsp. amyloliquefaciens VKM B-2582, and Bacillus sonorensis VKM B-2652, are characterized by the individual set of teichoic acids. All strains contained 1,3-poly(glycerol phosphates), unsubstituted, acylated with D-alanine, and glycosylated. The latter differ in the nature of the monosaccharide residue. Teichoic acids of B. mojavensis VKM B-2650T and B. amyloliquefaciens subsp. amyloliquefaciens VKM B-2582T contained α-glucopyranose, while those of B. sonorensis VKM B-2652T contained β-glucopyranose and N-acetyl-α-D-glucosamine. Moreover, cell walls of B. mojavensis VKM B-2650T contained a teichoic acid of poly(glycosylglycerol phosphate) nature with the following structure of the repeating unit: -4)-α-D-α-D-GlcpNAc-(1 → 3)]-Glcp-(1 → 2)-sn-Gro-(3-P-. The type strains have been characterized according to the composition of cell wall sugars and polyols. Application of teichoic acids (set and structure) as chemotaxonomic characteristics is discussed for six type strains of the Bacillus subtilis group. Polymer structures were determined by chemical and NMR spectroscopic techniques.  相似文献   

7.
The cell-wall teichoic acids of Nocardiopsis dassonvillei IMRU 509T, IMRU 504 and IMRU 1250 and Nocardiopsis antarctius VKM Ac-836T have the same unique structure that has not heretofore been found in bacteria. The polymer is built of 10 to 13 repeating units:
  相似文献   

8.
The structures of cell wall anionic carbohydrate-containing polymers in Streptomyces melanosporofaciens VKM Ac-1864T and phylogenetically close organisms-S. hygroscopicus subsp. hygroscopicus VKM Ac-831T, S. violaceusniger VKM Ac-583T, S. endus VKM Ac-1331, S. endus VKM Ac-129, and S. rutgersensis subsp. castelarensis VKM Ac-832T--have been comparatively studied by chemical and NMR spectroscopic methods. The natural polymer of a new, previously unknown structure, Kdn (3-deoxy-D-glycero-Dgalacto-non-2-ulopyranosonic acid) with beta-galactose residues at C-9, has been found in the cell walls of all the strains under study. The cell walls of all the studied organisms contain three teichoic acids (TA): a predominant TA (1,3-poly(glycerol phosphate) with N-acetylated alpha-glucosaminyl substitutes by C-2 of glycerol, and minor TAs, 1,3- and 2,3-poly(glycerol phosphate) polymers without substitution. Their chains have O-acetyl and O-lysyl groups. Microorganisms of the above-mentioned species differ in the number of alpha-glucosaminyl substitutes and in the degree of their acetylation in the predominant teichoic acid.  相似文献   

9.
The structures of cell wall glycopolymers from the type strains of three Actinoplanes species were investigated using chemical methods, NMR spectroscopy, and mass spectrometry. Actinoplanes digitatis VKM Ac-649T contains two phosphate-containing glycopolymers: poly(diglycosyl-1-phosphate) →6)-α-D-GlcpNAc-(1-P-6)-α-D-GlcpN-(1→ and teichoic acid →1)-sn-Gro-(3-P-3)-β-[β-D-GlcpNAc-(1→2]-D-Galp-(1→. Two glycopolymers were identified in A. auranticolor VKM Ac-648T and A. cyaneus VKM Ac-1095T: minor polymer–unsubstituted 2,3-poly(glycerol phosphate), widely abundant in actinobacteria (Ac-648T), and mannan with trisaccharide repeating unit →2)-α-D-Manp-(1→2)-α-D-Manp(1→6)-α-D-Manp-(1→(Ac-1095T). In addition, both microorganisms contain a teichuronic acid of unique structure containing a pentasaccharide repeating unit with two residues of glucopyranose and three residues of diaminouronic acids in D-manno- and/or D-gluco-configuration. Each of the strains demonstrates peculiarities in the structure of teichuronic acid with respect to the ratio of diaminouronic acids and availability and location of O-methyl groups in glucopyranose residues. All investigated strains contain a unique set of glycopolymers in their cell walls with structures not described earlier for prokaryotes.  相似文献   

10.
The cell wall of Nocardiopsis prasina VKM Ac-1880T was found to contain two structurally different teichoic acids: unsubstituted 3,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate), substituted at position 2 by 10% with alpha-N-acetylglucosamine and by 5% with O-acetyl groups. The structure of the polymers was studied by chemical analysis and NMR spectroscopy. The results obtained correlate well with 16S rRNA sequence data and confirm the species-specificity of teichoic acids in the genus Nocardiopsis.  相似文献   

11.
The structures of cell wall teichoic acids of the members of newly recognized genera of the order Actinomycetales were studied. Planotetraspora mira VKM Ac-2000T contains two types of teichoic acids: 2,3-poly(glycerol phosphate) substituted with -D-Galp at C-1 of glycerol and 1,3-poly(glycerol phosphate) substituted with -L-Rhap at OH-2 of glycerol (60%). Herbidospora cretacea VKM Ac-1997T contains the chains of 1,3-poly(glycerol phosphate) partially substituted with -D-Galp and -D-GalpNAc at C-2 of glycerol. The majority of -D-galactopyranosyl residues are substituted at OH-3 with a sulfate. The aforementioned teichoic acids have not been found in bacteria thus far. Actinocorallia herbida VKM Ac-1994T contains poly(galactosylglycerol phosphate), with the -Galp-(12)-Gro-P repeating units being linked via the phosphodiester bonds between the OH-3 of glycerol and OH-6 of galactose. Earlier, this structure was found in the cell wall of Actinomadura madura. The polymer structures were determined by chemical analysis and using 13C-NMR spectroscopy. The results show that teichoic acids are widespread in the order Actinomycetales.  相似文献   

12.
Yan X  Yan H  Liu Z  Liu X  Mo H  Zhang L 《Antonie van Leeuwenhoek》2011,100(3):415-419
A strain named A18 was recovered from a compost of button mushrooms. It was characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence comparison, it belonged to the genus Nocardiopsis and was most closely related to the type strains of Nocardiopsis flavescens (sequence similarity 98.0%), Nocardiopsis prasina (97.5%), Nocardiopsis metallicus (97.4%), Nocardiopsis alba (97.3%). The combination of phylogenetic analysis, DNA–DNA hybridization, phenotypic characteristics and chemotaxonomic data supported the proposal that strain A18 represents a new species of the genus Nocardiopsis, for which the name Nocardiopsis yanglingensis sp. nov. was proposed (type strain A18T = KCTC 19723T = CCTCC 209063T).  相似文献   

13.
The type strains of the species of the cluster Streptomyces lavendulae with a low level of DNA–DNA relatedness were found to contain different cell-wall carbohydrate polymers, whereas the species of this cluster with a level of DNA–DNA relatedness of about 60% contain similar or identical carbohydrate polymers. The type strains Streptomyces katraeVKM Ac-1220Tand S. polychromogenesVKM Ac-1207Tsynthesize mannan with different amounts of -1,2- and -1,3-substituted mannopyranose units and a small number of 1,3-poly(glycerolphosphate) chains. The cell walls of S. lavendulocolorVKM Ac-215Tand Streptomycessp. VKM Ac-2117 were found to contain a hitherto unknown teichuronic acid, whose repeating unit is a disaccharide consisting of diaminomannuronic acid and N-acetylgalactosamine: 4)--D-ManpNAc3NAcA-(1 3)--D-GalpNAc-(1 . In addition, the cell walls of these two streptomycetes contain -glucosylated 1,5-poly(ribitol phosphate). The cell walls of S. virginiaeVKM Ac-1218Tand S. flavotriciniVKM Ac-1277Tcontain the same poly(glucosyl-glycerolphosphate). The results presented in this paper are in accordance with the DNA–DNA relatedness data and indicate a taxonomic significance of the structure of the cell-wall polysaccharides for the delineation of phenetically related Streptomycesspecies.  相似文献   

14.
The cell walls of two streptoverticille genospecies which belong to a historically isolated group of the genus Streptomyces contain anionic polymers of different structure. Streptomyces hachijoensis VKM Ac-191T and Streptomyces cinnamoneus subsp. azacoluta VKM Ac-606T assigned to one genospecies on the basis of DNA--DNA hybridization [5] contain 37% of an identical sugar-1-phosphate polymer. The repeating disaccharide units of the polymer, 2-amino-2-deoxy-alpha-D-glucopyranosyl-(1-->6)-2-acetamido-2-deoxy-al pha-D-glucopyranose, are linked at C-1 and C-6' by phosphodiester bonds. The cell walls of Streptomyces biverticillatus VKM Ac-891T and Streptomyces baldaccii VKM Ac-821T, members of another genospecies, contain about 30% 1,3-poly(glycerol phosphate) completely substituted by 2-amino-2-deoxy-alpha-D-glucopyranosyl residues at C-2. Due to the presence of an amino sugar with a free amino group in the repeating unit, the polymers exhibit neutral properties. Polymer structures were determined by chemical methods and NMR spectroscopy. The data indicate taxonomic specificity of anionic polymers in streptoverticille cell walls.  相似文献   

15.
Disaccharide 1-phosphate polymers as well as teichoic acids of various structures have been found in the cell walls of the representatives of the Bacillus subtilis group, namely Bacillus subtilis subsp. spizizenii VKM B-720 and VKM B-916, B. subtilis VKM B-517, and Bacillus vallismortis VKM B-2653T. Disaccharide 1-phosphate polymers are composed of repeating units of the following structure: -P-4)-β-D-GlcpNAc-(1→6)-α-D-Galp-(1-, the N-acetylglucosamine residues are partially acetylated at positions O3 and O6 (VKM B-720 and VKM B-916); -P-4)-β-D-Glcp-(1→6)-α-D-GlcpNAc-(1-, the glucopyranose residues are partially acetylated at positions O2 or O3 (VKM B-517); -P-6)-α-D-GlcpNH 3 + /α-D-GlcpNAc-(1→2)-α-D-Glcp-(1-, the N-acetylglucosamine residues are partially deacetylated (VKM B-2653T). The structures of the two last disaccharide 1-phosphate polymers have not been reported so far for Gram-positive bacteria. The teichoic acids in the studied strains are O-D-alanyl-1,5-poly(ribitol phosphates) substituted with β-D-glucopyranose (VKM B-517, VKM B-720, VKM B-916) or 2-acetamido-2-deoxy-β-D-glucopyranose (VKM B-2653T). The structures of the phosphate-containing polymers have been studied by chemical methods and by NMR spectroscopy.  相似文献   

16.
The structure of cell wall teichoic acids was studied by chemical methods and NMR spectroscopy in the type strains of two actinomycete species of the "Streptomyces griseoviridis" phenetic cluster: Streptomyces daghestanicus and Streptomyces murinus. S. daghestanicus VKM Ac-1722T contained two polymers having a 1,5-poly(ribitol phosphate) structure. In one of them, the ribitol units had alpha-rhamnopyranose and 3-O-methyl-alpha-rhamnopyranose substituents; in the other, each ribitol unit was carrying 2,4-ketal-bound pyruvic acid. Such polymers were earlier found in the cell walls of Streptomyces roseolus and Nocardiopsis albus, respectively; however, their simultaneous presence in the cell wall has never been reported. The cell wall teichoic acid of Streptomyces murinus INA-00524T was is a 1,5-poly(glucosylpolyol phosphate), whose repeating unit was [-6)-beta-D-glucopyranosyl-(1 --> 2)-glycerol phosphate-(3-P-]. Such a teichoic acid was earlier found in Spirilliplanes yamanashiensis. The 13C NMR spectrum of this polymer is presented for the first time. The results of the present investigation, together with earlier published data, show that the type strains of four species of the "Streptomyces griseoviridis" phenetic cluster differ in the composition and structure of their teichoic acids; thus, teichoic acids may serve as chemotaxonomic markers of the species.  相似文献   

17.
Structures of two cell wall teichoic acids of Brevibacterium iodinum VKM Ac-2106T were studied. The structure of mannitol teichoic acid described earlier was mainly confirmed. This polymer is 1,6-poly(mannitol phosphate) bearing -D-glucopyranosyl residues at the C-2 of mannitol and pyruvic acid residues at the C-4 and C-5. The absolute configurations of D-mannitol and S-pyruvic acid were found. The following distinctions from the earlier described structure were found: unsubstituted 1,6-poly(mannitol phosphate) residues and residues substituted only by -D-glucopyranosyl at the C-2 of mannitol but unsubstituted by pyruvic acid are present in the chain. The structure of glycerol teichoic acid present in the cell wall as a minor component (7%) is also described. This acid is identified as 1,3-poly(glycerol phosphate) substituted at the C-2 of glycerol by 2-acetamido-2-deoxy--D-galactopyranosyl residues bearing R-pyruvic acid residues at the C-4 and C-6 of galactose. This polymer is for the first time described in the cell wall of Gram-positive bacteria.Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1659–1666.Original Russian Text Copyright © 2004 by Potekhina, Evtushenko, Senchenkova, Shashkov, Naumova.  相似文献   

18.
Potekhina  N. V.  Shashkov  A. S.  Evtushenko  L. I.  Naumova  I. B. 《Microbiology》2003,72(2):157-161
The cell walls of Microbispora mesophila strain Ac-1953T (the family Streptosporangiaceae) and Thermobifida fusca Ac-1952T (the family Nocardiopsaceae) were found to contain teichoic acids of a poly(glycerol phosphate) nature. The teichoic acid of M. mesophila (formerly Thermomonospora mesophila) represents a 1,3-poly(glycerol phosphate) containing 5% of substituent 2-acetamido-2-deoxy--D-galactosaminyl residues. Teichoic acid of such a kind was found in actinomycetes for the first time. The cell wall of T. fusca (formerly Thermonospora fusca) contains two teichoic acids, namely, unsubstituted 1,3-poly(glycerol phosphate) and -glucosylated 1,3-poly(glycerol phosphate).  相似文献   

19.
This work deals with the taxonomic study of orange-pigmented bacteria isolated from permafrost sediments, rice plots, and soils contaminated with wastes from the chemical and salt industries that were assigned to the genus Brevibacterium on the basis of phenotypic characteristics, as well as of some strains described previously as Brevibacterium linens. The study revealed three genomic species, whose members and the type strains of the closest species of Brevibacterium had DNA similarity levels between 24 and 59%. The strains of the genomic species differed from each other and from the known species of Brevibacterium in some physiological and biochemical characteristics, as well as in the sugar and polyol composition of their teichoic acids. The 16S rDNA sequence analysis confirmed the assignment of the environmental isolates to the genus Brevibacterium and showed the phylogenetic distinction of the three genomic species. The results obtained in this study allow three new Brevibacterium species to be described: Brevibacterium antiquum (type strain VKM Ac-2118T = UCM Ac-411T), Brevibacterium aurantiacum (type strain VKM Ac-2111T = NCDO 739T = ATCC 9175T), and Brevibacterium permense (type strain VKM Ac-2280T = UCM Ac-413T).  相似文献   

20.
A teichoic acid of Nocardioides albus VKM Ac-805T cell walls, a typical species of the genus Nocardioides, contains a poly(glycosylglycerol phosphate). The repeating unit of the polymer has the structure: [figure]. These units are in phosphodiester linkage at C-3 of glycerol and C-3 of beta-D-galactopyranose. beta-D-Galactopyranosyl residues are substituted at C-4 by beta-D-glucopyranose carrying a 4,6-pyruvate ketal group in S-configuration. The presence of pyruvic acid in the majority of repeating units increases the anionic properties of the polymer in comparison with most other common teichoic acids. This is the first report of the occurrence of a beta-D-galactofuranosyl residue in teichoic acids; it probably acts as a terminator of an extending chain of the polymer. The ratio of beta-D-galactopyranosyl to beta-D-galactofuranosyl units is 7:1. The polymer structure was determined by NMR spectroscopy. This type of teichoic acid structure has not been reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号