首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To control whiteflies on soybean crops in an effective and economically viable way, it is necessary to quantify the occurrence and density of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on the leaflets. Estimating the number of B. tabaci cm‐2 on leaflets is difficult, because its distribution pattern on the various parts of the plant canopy and on the leaflet surface is unknown. The aim of this study was to evaluate the distribution of B. tabaci nymphs on soybean plants and leaflets, under greenhouse and field conditions. One hundred soybean plants infested with all nymph stages were randomly selected in a greenhouse, and 25 in a field. Of each plant, a trifoliate leaf of the middle third of the plant’s height was selected and its central leaflet was collected (greenhouse experiment), or a trifoliate leaf of each third layer (upper, middle, and lower), of which the left, central, and right leaflets were collected (field experiment). The collected leaflets were divided into 32 sections (1 cm2 per section), arranged in an array of eight rows and four columns to count whitefly nymphs. The Morisita index (Iδ), the negative binomial parameter k, and the dispersion index (I) were calculated for each leaflet, using the number of nymphs as variable. The highest population densities of whitefly nymphs were found in the middle third of the soybean plants. In leaflets from the middle third, the nymphs concentrated in the middle and bottom parts of the leaflets, whereas in the upper and lower thirds of the plant, they were randomly distributed on the leaflets.  相似文献   

2.
3.
Whiteflies Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) are important pests in pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.) crops in many countries. Contrary to what is observed for all other countries, in Uruguay, B. tabaci is mainly found on pepper and rarely on tomato, while T. vaporariorum is exclusively found on tomato. This study tested the oviposition preferences and biotic potential of these two whiteflies reared on both host plants. The developmental time, survival rates, longevity, fecundity and main population parameters were characterized. Both whitefly species showed different preference patterns regarding their host plants. T. vaporariorum preferred tomato instead of pepper to oviposit. Their developmental time is longer on pepper. B. tabaci preferred pepper, but the difference from tomato was not very strong. Pepper affects the biotic expression of T. vaporariorum negatively, while B. tabaci is able to develop equally on both host plants. These results show that the distribution differences of both whiteflies observed on both host plants could have a biological basis.  相似文献   

4.
Two cherry tomato plant cultivars (Lycopersicon esculentum Miller, cultivars ‘Koko’ and ‘Pepe’) were supplied with high (395 ppm), medium (266 ppm) and low (199 ppm) concentrations of nitrogen to determine the influence of nitrogen fertilization on development, cultivar preference and honeydew production by greenhouse whiteflies, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). The nitrogen, protein, and chlorophyll contents of tomato leaves were higher in the high nitrogen supplied plants than in the medium or low nitrogen supplied plants, but the sugar content showed an inverse relationship. The developmental times of eggs and nymphs decreased as the nitrogen concentrations increased in both cultivars. The preference of T. vaporariorum was compared by counting the number of eggs deposited on leaves in choice and non-choice tests. In the non-choice test, no significant nitrogen treatment effects were observed but the upper plant stratum was preferred for egg laying. In the choice test, there were significant main effects of cultivar and nitrogen concentration. T. vaporariorum laid eggs more on leaves of plants with higher nitrogen at the upper stratum. In both experiments, T. vaporariorum preferred the ‘Koko’ cultivar to the ‘Pepe’ cultivar. The honeydew production of T. vaporariorum nymphs increased with decreasing nitrogen treatment concentrations. The largest honeydew production was detected in the ‘Pepe’ cultivar grown at low nitrogen concentration. It is concluded that cultivar ‘Pepe’ had an advantage over ‘Koko’ in term of T. vaporariorum management program in tomato greenhouses.  相似文献   

5.
《Journal of Asia》2023,26(1):102022
The sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), and the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), are important pests of protected crops grown in warm climates. We compared efficacy of a new strain of the entomopathogenic fungus Beauveria bassiana (ARP14) isolated from Riptortus pedestris (Hemiptera: Alydidae) with a commercial strain (GHA) against different life stages of both B. tabaci and T. vaporariorum. Eggs, nymphs, and adults were exposed to 1 × 108 conidia/mL of each strain using the leaf-dipping method. The mycosis rate of B. tabaci eggs (as a proportion) was relatively low (0.13 for B. bassiana ARP14 and 0.10 for B. bassiana GHA), while, for T. vaporariorum eggs, mycosis rate was 0.44 for B. bassiana GHA and 0.27 for B. bassiana ARP14. However, mycosis rate of 1st instars of both whiteflies was much higher than for eggs, for both strains (ARP14 and GHA). The developmental period of B. tabaci eggs exposed to ARP14 was significantly shorter than for either eggs treated with GHA or the control. For 2nd and 4th instar nymphs and adults of both whiteflies there were no differences in mycosis rates between the two B. bassiana strains. These results suggest that, B. bassiana ARP14 could be commercialized as a native biological control agent for control of B. tabaci and T. vaporariorum.  相似文献   

6.
The proliferation of sooty mold on tomato fruit, Solanum lycopersicum L.—as caused by the secretion of honeydew on the fruit by greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae)—has recently become a serious problem in estivo-autumnal greenhouse tomato cultivation in Japan. It is becoming increasingly difficult to control T. vaporariorum using insecticides because whiteflies have developed resistance to a variety of insecticides. As the first step towards integrated pest management, we examined whether the use of selective insecticides could prompt a cascade process in which an increase in parasitoids is followed by a decrease in whitefly occurrence and then a reduction in sooty mold damage. We compared greenhouses in which nonselective insecticides effective against T. vaporariorum and its parasitoids were used (hereafter denoted “nonselective insecticide greenhouses”) with greenhouses in which selective insecticides for T. vaporariorum were used (hereafter denoted “selective insecticide greenhouses”) in terms of the density and level of parasitism of T. vaporariorum as well as the degree of damage from sooty mold. The number of parasitized whiteflies increased with the number of whiteflies in the selective insecticide greenhouses, whereas it remained at low levels regardless of the number of whiteflies in the nonselective insecticide greenhouses. Furthermore, the selective insecticide greenhouses showed significantly higher parasitism levels, fewer whiteflies, and reduced sooty mold damage compared to the nonselective insecticide greenhouses. These results suggest that the use of selective insecticides causes an increase in parasitism, which in turn suppresses the number of greenhouse whiteflies and, eventually, sooty mold.  相似文献   

7.
Identification of plant chemicals attracting and repelling whiteflies   总被引:1,自引:0,他引:1  
The harmful side effects of chemical pest control have focused increasing attention on the potential for environmentally friendly, sustainable and efficient methods to control the sweet potato whitefly, Bemisia tabaci (Gennadius). One control method employs a volatile repellent (push), and an alluring volatile trap (pull) to manipulate the distribution and control the whitefly. Here, a Y-tube olfactometer was used to investigate the orientation responses of the whitefly toward the volatile components of six plants: tomato, tobacco, cabbage, cotton, cucumber and celery. Gas chromatography coupled with mass spectrometry was used to identify and quantify extracts from the six plants. Six treatments were conducted to demonstrate the “push–pull” method’s effects on the host selection behaviors of B. tabaci in a greenhouse. Four of the plant extracts tested had exceedingly attractive effects on the adult insects, but not those from celery. B. tabaci exhibited a prominent attraction response to (E)-2-hexenal, 3-hexen-1-ol and mixtures of these compounds, with the response rates exceeding 80 % for all tested proportions. Limonene diluted 500 times had a 62 % greater deterrent effect on adults than was observed in its absence, and it repelled egg-laying by more than 80 % in the greenhouse experiment. These data show that (E)-2-hexenal, 3-hexen-1-ol and limonene can be expected to be used for the “push–pull” method to control B. tabaci.  相似文献   

8.
The tobacco whitefly Bemisia tabaci (Gennadius) cryptic species complex and of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are extensively reported as destructive pests in vegetable crops worldwide. A survey was conducted in 2011 and 2012 to determine the occurrence and genetic diversity present in the populations of these whiteflies in the major vegetable production areas of Costa Rica. Insect samples were collected from sweet pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), common bean (Phaseolus vulgaris L.) and weeds present in commercial crops either in open field or greenhouse conditions. PCR‐RFLP analysis of mitochondrial cytochrome c oxidase subunit 1 gene (mtCOI) sequences of 621 whitefly individuals confirmed the presence of the Mediterranean (MED) type of the B. tabaci and of T. vaporariorum in most sampled regions. Also, individuals of the Middle East‐Asia Minor 1 (MEAM1) type of the B. tabaci were observed in low numbers. Contingency analyses based on type of crop, geographical region, whitefly species, year of collection and production system confirmed that T. vaporariorum was the most frequent species in vegetable production areas in Costa Rica, both in greenhouses and in open fields. B. tabaci MED is likely spreading to new areas of the country, whereas B. tabaci MEAM1 was mostly absent or rarely found. Comparisons of mtCOI sequences from B. tabaci individuals revealed the presence of four B. tabaci sequence haplotypes (named MED‐i, MED‐ii, MEAM1‐i, MEAM1‐xviii) in Costa Rica, three of them identical to B. tabaci haplotypes previously reported in the Western Hemisphere and other parts of the world. Analysis of sequences of T. vaporariorum individuals revealed a more complex population with the presence of 11 haplotypes, two of which were identical to T. vaporariorum sequences reported from other countries.  相似文献   

9.
《Journal of Asia》2020,23(4):1181-1187
The greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is one of the most important pests of greenhouse crops. The intensive use of chemical insecticides has resulted in insecticide resistance in T. vaporariorum and the critical level of pesticides residue in crops. It is therefore necessary to develop new control methods based on ecological pest management. The present study was designed to control greenhouse whitefly by finding and using insect repellent wavelengths. The repellent wavelength experiment was conducted by a two-way phototactic apparatus given a choice between darkness and visible wavelength spectrum from violet (380–450 nm) to red (620–750 nm). The phototactic responses of the greenhouse whitefly were then investigated in a four-way phototactic apparatus given a choice between two light regimes, light-emitting diode (LED) and sunlight. The results indicated that the lowest (69.2%) and highest (97.8%) number of whiteflies were attracted to violet and orange (590–625 nm) spectra, respectively. In addition, the present study indicated a significant attraction of T. vaporariorum adults to sunlight compared with LED. Furthermore, the eggplants grown under growth LEDs showed a significantly higher growth rate than the plants grown under sunlight. These findings suggest that this type of LED not only has positive effects on plant growth but it also has a repellent activity on T. vaporariorum adults, leading us to develop an effective behavioral control of the greenhouse whitefly.  相似文献   

10.
Encarsia formosa Gahan is a solitary endoparasitoid that is commercially reared and released for augmentative biological control of whiteflies including Bemisia tabaci (Gennadius). Bemisia tabaci biotypes B and Q are two most invasive species that greatly reduce crop yields in China by feeding on plant sap and by transmitting Tomato Yellow Leaf Curl Virus (TYLCV). The effects of TYLCV infection of tomato on E. formosa foraging on B. tabaci B and Q are unknown. In Y-tube olfactometer assays in the present study, E. formosa significantly preferred TYLCV-infected tomato plants over TYLCV-free plants. The wasp females also significantly preferred TYLCV-infected tomato plants infested with 3rd-instar nymphs of B. tabaci biotype Q over TYLCV-free plants with biotype Q nymphs. However, no significant differences were observed when B. tabaci biotype B was infested on tomato plants. The oviposition bioassays confirmed that TYLCV infection on tomato plants resulted in the recruitment of parasitoids. These results indicate that TYLCV-infection of tomato increase the foraging of E. formosa on B. tabaci, as differs on the B and Q biotypes.  相似文献   

11.
Encarsia sophia (Girault and Dodd) is an autoparasitoid in the hymenopteran family Aphelinidae. The females develop as primary parasitoids on whitefly nymphs (primary hosts), whereas the males develop as hyperparasitoids on their own species or on other primary parasitoid species (secondary hosts). The autoparasitoids not only parasitise whiteflies but also kill them with strong host-feeding capacity. In this study, female and male E. sophia were reared on the primary hosts Trialeurodes vaporariorum and Bemisia tabaci ‘Q’, and the host-feeding and parasitism of wasps on both whitefly species were determined for the four possible different mating combinations: (i) E. sophia females reared on B. tabaci (ESF-BT) mated with E. sophia males from B. tabaci (ESM-BT), (ii) E. sophia females reared on T. vaporariorum (ESF-TV) mated with E. sophia males from T. vaporariorum (ESM-TV), (iii) ESF-BT mated with ESM-TV, and (iv) ESF-TV mated with ESM-BT. ESF-TV mated with ESM-TV killed the largest percentage of whitefly nymphs through host feeding. The ESF-TV with larger body size mating with larger ESM-TV killed more whitefly nymphs through host feeding than those mating with smaller ESM-BT. Whether B. tabaci or T. vaporariorum were used as hosts, ESF-TV mated with ESM-TV and ESM-BT and ESF-BT mated with ESM-BT significantly parasitised more whitefly nymphs than ESF-BT mated with ESM-TV. In general, ESF-BT mated with ESM-TV killed significantly fewer whitefly nymphs through parasitism and host feeding than the other three mating combinations on both whitefly species. These results indicated that the performance of autoparasitoids on insect pests was not only dependent on females but was also affected by mating with males from different primary host species.  相似文献   

12.
Plant viruses can produce direct and plant-mediated indirect effects on their insect vectors, modifying their life cycle, fitness and behavior. Viruses may benefit from such changes leading to enhanced transmission efficiency and spread. In our study, female adults of Bemisia tabaci were subjected to an acquisition access period of 72 h in Tomato yellow leaf curl virus (TYLCV)-infected and non-infected tomato plants to obtain viruliferous and non-viruliferous whiteflies, respectively. Insects that were exposed to virus-infected plants were checked by PCR to verify their viruliferous status. Results of the Ethovision video tracking bioassays indicated that TYLCV induced an arrestant behavior of B. tabaci, as viruliferous whitefly adults remained motionless for more time and moved slower than non-viruliferous whiteflies after their first contact with eggplant leaf discs. In fact, Electrical Penetration Graphs showed that TYLCV-viruliferous B. tabaci fed more often from phloem sieve elements and made a larger number of phloem contacts (increased number of E1, E2 and sustained E2 per insect, p<0.05) in eggplants than non-viruliferous whiteflies. Furthermore, the duration of the salivation phase in phloem sieve elements (E1) preceding sustained sap ingestion was longer in viruliferous than in non-viruliferous whiteflies (p<0.05). This particular probing behavior is known to significantly enhance the inoculation efficiency of TYLCV by B. tabaci. Our results show evidence that TYLCV directly manipulates the settling, probing and feeding behavior of its vector B. tabaci in a way that enhances virus transmission efficiency and spread. Furthermore, TYLCV-B. tabaci interactions are mutually beneficial to both the virus and its vector because B. tabaci feeds more efficiently after acquisition of TYLCV. This outcome has clear implications in the epidemiology and management of the TYLCV-B. tabaci complex.  相似文献   

13.

Background  

Whiteflies are cosmopolitan phloem-feeding pests that cause serious damage to many crops worldwide due to direct feeding and vectoring of many plant viruses. The sweetpotato whitefly Bemisia tabaci (Gennadius) and the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are two of the most widespread and damaging whitefly species. To complete their unbalanced diet, whiteflies harbor the obligatory bacterium Portiera aleyrodidarum. B. tabaci further harbors a diverse array of secondary symbionts, including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea. T. vaporariorum is only known to harbor P. aleyrodidarum and Arsenophonus. We conducted a study to survey the distribution of whitefly species in Croatia, their infection status by secondary symbionts, and the spatial distribution of these symbionts in the developmental stages of the two whitefly species.  相似文献   

14.
The whitefly Bemisia argentifolii Bellows & Perring is an economically important pest of tomatoes, Lycopersicon esculentum Mill., inducing an irregular ripening disorder of fruit and transmitting plant pathogenic viruses. With the goal of investigating ginger oil as a protectant for tomato plants, we tested the effects of concentration of ginger oil and application methods on repellency to whitefly in a vertical still-air olfactometer. In choice and no-choice experiments conducted in a greenhouse, we evaluated whether ginger oil would protect tomato seedlings from whitefly settling and oviposition. Ginger oil repelled whitefly adults in the vertical olfactometer. The repellency of ginger oil was attributed to its odor, effective at the concentrations used over a distance of 1-2 mm. Tomato leaf disks dipped in ginger oil repelled whiteflies at concentrations of 0.5, 0.75, and 1%, but not at concentrations <0.5%, in a dose-response experiment conducted in the olfactometer. Repellency increased with increasing ginger oil concentration when leaf disks were dipped in ginger oil but not when ginger oil was sprayed onto the leaf disks. Higher quantities of monoterpenes and sesquiterpenes were deposited on leaf disks dipped in ginger oil than on sprayed leaf disks according to gas chromatographic quantification. In the greenhouse, both choice and no-choice tests were conducted with tomato seedlings dipped in 0.25% ginger oil solution or 2% Tween 20, as treatment and control, respectively. In the choice test, 35-42% fewer whitefly adults settled and 37% fewer eggs were laid during the 24-h exposure period on tomato plants dipped in ginger oil solution than on plants dipped in 2% Tween 20. In the no-choice test, 10.2-16.7% fewer whiteflies settled on treated plants compared with control plants but no significant differences were detected in the number of eggs laid. Higher concentrations of ginger oil could not be used without causing severe wilting of tomato leaves. Ginger oil has potential as a protectant of tomato seedlings against B. argentifolii, but issues of phytotoxicity and coverage need to be addressed.  相似文献   

15.
The predator Tupiocoris cucurbitaceus is frequently found attacking Trialeurodes vaporariorum in greenhouses without pesticide applications in Argentina. The objective of these studies was to evaluate some biological characteristics of this species fed on three types of diet (whitefly nymphs, Sitotroga cerealella eggs and a mix of both) and on two host plants (tomato and tobacco), under controlled experimental conditions. Preimaginal developmental time for female and male bugs was shorter in the presence of whiteflies than with only moth eggs. Females lived longer when they ate only whitefly nymphs compared to a mixed diet or only moth eggs. The amount of adult descendants was greater when bugs could eat whiteflies, regardless of the presence of S. cerealella. Embryonic development time, male longevity and sex proportion were not affected by the diet or the host plant. Prey consumption was evaluated for three T. cucurbitaceus life history stages (fourth/fifth instar nymphs, female and male adults) on two types of prey (whitefly nymphs and S. cerealella eggs). On tomato, females were more voracious than males and nymphs. On tobacco, adults and nymphs consumed more S. cerealella than T.vaporariorum nymphs, but again, bug females preyed more than males and nymphs. Results demonstrate that T. cucurbitaceus can survive, develop and reproduce normally using both T. vaporariorum and S. cerealella eggs as prey on tobacco or tomato plants. This information can be useful for managing this predator against T. vaporariorum through conservative or augmentative biological control strategies.  相似文献   

16.

Background

The whitefly Bemisia tabaci (Genn.) causes dramatic damage to plants by transmitting yield-limiting virus diseases. Previous studies proved that the tomato breeding line ABL 14-8 was resistant to B. tabaci, the vector of tomato yellow leaf curl disease (TYLCD). This resistance is based on the presence of type IV glandular trichomes and acylsucrose production. These trichomes deter settling and probing of B. tabaci in ABL 14-8, which reduces primary and secondary spread of TYLCD.

Methodology/Principal Findings

Whitefly settlement preference was evaluated on the adaxial and abaxial leaf surfaces of nearly-isogenic tomato lines with and without B. tabaci-resistance traits, ‘ABL 14-8 and Moneymaker’ respectively, under non-choice and free-choice conditions. In addition, the Electrical Penetration Graph technique was used to study probing and feeding activities of B. tabaci on the adaxial and abaxial leaf surfaces of the same genotypes. B. tabaci preferred to settle on the abaxial than on the adaxial surface of ‘Moneymaker’ leaves, whereas no such preference was observed on ABL 14-8 tomato plants at the ten-leaf growth stage. Furthermore, B. tabaci preferred to feed on the abaxial than on the adaxial leaf surface of ‘Moneymarker’ susceptible tomato plants as shown by a higher number of sustained phloem feeding ingestion events and a shorter time to reach the phloem. However, B. tabaci standard probing and feeding behavior patterns were altered in ABL 14-8 plants and whiteflies were unable to feed from the phloem and spent more time in non-probing activities when exposed to the abaxial leaf surface.

Conclusions/Significance

The distorted behavior of B. tabaci on ABL 14-8 protects tomato plants from the transmission of phloem-restricted viruses such as Tomato yellow leaf curl virus (TYLCV), and forces whiteflies to feed on the adaxial side of leaves where they feed less efficiently and become more vulnerable to natural enemies.  相似文献   

17.
SARAH (Software for theAssessment of antibioticResistance toAleyrodidae inHost plants) is a deterministic simulation model of whitefly population growth based on whitefly life-history components determined on individual plants. The life-history components recorded were oviposition rate, adult survival, pre-adult survival, developmental period, and sex ratio. The simulation model serves as a tool to combine these components and to obtain a single criterion for (antibiotic) resistance. The criterion used was the decrease in simulated intrinsic population growth rate, r s , relative the r s value determined on a susceptible control genotype. This model-based evaluation method was tested using the greenhouse whitefly,Trialeurodes vaporariorum Westwood, on tomato and the sweetpotato whitefly,Bemisia tabaci Gennadius, on tomato, eggplant, collard, and pepper. To study its consistency over time, the evaluation method was repeated six times forT. vaporariorum on a susceptible and a resistant tomato cultivar. Simulated intrinsic population growth rate was more consistent in indicating resistance than any of the individual life-history components. Of tenL. hirsutum accessions tested for resistance toT. vaporariorum, three exhibited r s values that were significantly lower than those for the susceptible control. In addition, on these tenL. hirsutum accessions, a significant positive correlation was observed between r s and sex ratio (# females/# males). Four host plant species (tomato, collard, eggplant, and pepper) were evaluated for resistance toB. tabaci. All life-history components and r s values varied among host species, while a negative r s value was observed forB. tabaci on pepper. A high correlation was found between results from a sensitivity analysis of SARAH and results from a sensitivity analysis of a validated whitefly population simulation model by Yanoet al. (1989a). Significant correlations were found for the relationships between oviposition rate, adult survival, or pre-adult survival and r s , indicating that none of these life-history components can be omitted from the test procedure. This model-based evaluation method offers a standardized way to quantify levels of antibiotic resistance to whiteflies and will enhance efficiency in breeding programs.  相似文献   

18.
Trap cropping, though promising, has had little evaluation in greenhouses. This study evaluated eggplant, Solanum melongena L. (Solanaceae), as a trap crop for two whitefly species, Trialeurodes vaporariorum (Westwood) and Bemisia argentifolii Bellows & Perring (both Hemiptera: Aleyrodidae), on greenhouse poinsettia, Euphorbia pulcherrima Willd. ex Koltz (Euphorbiaceae). Because the two whitefly species co‐occur in greenhouses, a common trap crop for both whiteflies is desirable. When adults were provided a choice between eggplant and poinsettia in a cage, 60% of B. argentifolii and 98% of T. vaporariorum were observed on eggplant after 3 days. However, when adults were given eggplant after first settling on poinsettia, only 38% of B. argentifolii were later found on eggplant, whereas 95% of T. vaporariorum moved to eggplant. In a greenhouse experiment, eggplant did not affect either the spatial distribution or density of adult B. argentifolii on poinsettias. In contrast, eggplant changed the spatial distribution of T. vaporariorum within 3 days by attracting and retaining the adults. However, the attractiveness of eggplant did not result in a reduced number of T. vaporariorum on poinsettias compared with poinsettias in monoculture. Adult T. vaporariorum mortality was high on poinsettias and this likely caused adult density on poinsettias in monoculture to decrease as fast as that under trap cropping. A simulation model was developed to examine how adult whitefly mortality on poinsettia influences trap cropping effectiveness. When whitefly mortality was high, simulated densities were similar to the experimental data. This reveals an unexpected factor, pest mortality on the main crop, that can influence the relative effectiveness of trap cropping. Our results indicate that eggplant will not work unilaterally as a trap crop for B. argentifolii. For T. vaporariorum, attraction to eggplant might be useful as a trap crop system when whitefly mortality on the main crop is not high.  相似文献   

19.
We conducted three experiments for management of Bemisia tabaci (Gennadius) biotype ‘B’ on tomatoes under greenhouse conditions: (i) vertically placing yellow sticky cards either parallel or perpendicular to tomato rows at a rate of 1 per 3‐m row; (ii) releasing Eretmocerus sp. nr. rajasthanicus once at 30 adults/m2 in the high whitefly density greenhouses (> 10 adults/plant), or twice at 15 adults/m2 at a 5‐day interval in the low whitefly density greenhouses (< 10 adults/plant); and (iii) using combinations of yellow sticky cards that were placed vertically parallel to tomato rows and parasitoids released once at 30/m2 in high whitefly density greenhouses or twice at 15/m2 at a 5‐day interval in low whitefly density greenhouses. Our data show that yellow sticky cards trapped B. tabaci adults and significantly reduced whitefly populations on tomato. The yellow sticky cards that were placed parallel to tomato rows caught significantly more whitefly adults than those placed perpendicular to tomato rows on every sampling date. In the treatment where parasitoids were released once at 30/m2 in high whitefly density greenhouses, the number of live whitefly nymphs were reduced from 4.6/leaf to 2.9/leaf in 40 days as compared with those on untreated plants on which live whitefly nymphs increased from 4.4/leaf to 8.9/leaf. In the treatment where parasitoids were released twice at 15/m2 in low whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.1/leaf to 1.7/leaf in 20 days as compared with those on untreated plants on which numbers of live nymphs of B. tabaci increased from 2.2/leaf to 4.5/leaf. In the treatment of yellow sticky cards and parasitoid release once at 30/m2 in high whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 7.2/leaf to 1.9/leaf, and in the treatment of yellow sticky cards and parasitoid release twice at 15/m2 at a 5‐day interval at low whitefly density, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.5/leaf to 0.8/leaf; whereas the numbers of live nymphs of B. tabaci on untreated plants increased from 4.4/leaf to 8.9/leaf. An integrated program for management of B. tabaci on greenhouse vegetables by using yellow sticky cards, parasitoids and biorational insecticides is discussed.  相似文献   

20.
Yellow sticky traps (YSTs) are commonly used in greenhouse crops to monitor flying pest species. Whiteflies like Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) and Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) are typically monitored using YSTs in tomato and sweet pepper crops. By counting the whiteflies on a YST, growers get an idea of the pests density in space and time in the greenhouse and can take pest control measurements accordingly. The downside is that manual counting of whiteflies on a YST is very time‐consuming and thus costly. A protocol to semi‐automate counting and identification of whiteflies on YSTs using image analysis software was developed to speed up the monitoring process. Bemisia tabaci is on average smaller than T. vaporariorum and by discriminating by size based on the amount of pixels in digital images, ratios of both species in a mixed population on YSTs could be estimated accurately. At low densities, the countings of different YSTs should be pooled till a 200 density threshold is reached in order to get accurate ratio estimates of both species. This study provides a protocol to reliably count and identify whiteflies semi‐automatically on standardized pictures. More research is required to develop alternative techniques to make standardized pictures in the field (e.g., with smartphone).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号