首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superoxide dismutases (EC 1.15.1.1) in vascular plants representing different evolutionary levels were characterized using polyacrylamide gel electrophoresis. The three forms of the enzyme were distinguished from each other based on the following criteria: a) the Cu-Zn enzyme is sensitive to cyanide wherease the Fe and Mn enzymes are not; and b) the Cu-Zn and Fe enzymes are inhibited by H2O2 whereas the Mn enzyme is H2O2-resistant. Of the 43 plant families investigated, the Fe-containing superoxide dismutase was found in three families: Gingkoaceae, Nymphaceae, and Cruciferae.  相似文献   

2.
Iron-containing Superoxide dismutases are more sensitive to inhibition by azide than are the corresponding manganese containing enzymes, while the copper-zinc Superoxide dismutases are least sensitive. Thus, at pH 7.8, 10 mm azide inhibited Cu-Zn, Mn, and Fe enzymes by ~10%, ~30% and ~73%, respectively. Stated differently, the concentrations of N3? required to cause 50% inhibition of the Cu-Zn, Mn, and Fe enzymes was ~32 mm, ~20 mm and ~4 mm, respectively. These inhibitions by azide, which were imposed and reversed rapidly, appear to provide a useful criterion for distinguishing among the classes of these enzymes. Sensitivity towards inhibition by N3?can be applied to the Superoxide dismutases in crude extracts, for the purpose of deciding to which class they belong.  相似文献   

3.
A unique form of superoxide dismutase was isolated and characterized from Nocardia asteroides GUH-2. This enzyme contains 1 to 2 g atoms each of Fe, Mn, and Zn per mol and exhibits spectral properties suggestive of Fe- or Mn-containing superoxide dismutases. Its Mr = 100,000, and it is composed of four subunits of equal size which are not covalently joined. The amino acid composition of the enzyme was more closely related to the Mn- or Fe-containing enzymes of Mycobacterium species and was least related to the Cu-Zn enzyme of eukaryotes. Azide at 1 and 20 mM inhibits the activity 10 and 41%, respectively, and 5 mM H2O2 inhibits 40%, but 1 or 5 mM cyanide caused trivial effect. The immunofluorescent staining, which was specific for superoxide dismutase of N. asteroides, indicated the association of this enzyme to the outer cell wall of the organism. Further, the enzyme was shown to be selectively secreted into the medium.  相似文献   

4.
Superoxide dismutases (SODs), members of the metalloenzymes family are most effective intracellular enzymatic antioxidant in aerobic organisms. These enzymes provide the first line of defense in plants against the toxic effects of elevated levels of reactive oxygen species (ROS) generated during various environmental stresses. The availability of high-throughput computational tools has provided better opportunities to characterize the protein features and determine their function. In the present study an attempt was made to gain an insight into the structure and evolution of subunits of SODs (Cu-Zn, Mn and Fe SODs) of rice. The 3-Dimensional structures of SODs were modeled based on available X-ray crystal structures and further validated. The primary sequence, secondary and tertiary structure analysis revealed Mn and Fe SOD to be structurally homologous while Cu-Zn SOD is un-related to either of them. Comparative structural study also revealed former two were dominated by α-helices followed by β-strands in contrast; Cu-Zn SOD dominated by β-strands. Molecular phylogeny indicated a common evolutionary origin of Mn and Fe SOD while Cu-Zn SOD may have evolved separately.  相似文献   

5.
《Free radical research》2013,47(1):269-278
The active site Cu ion in Cu,Zn superoxide dismutase is alternately oxidized and reduced during the enzymatic dismutation of superoxide to hydrogen peroxide and molecular oxygen. For oxidized Cu,Zn superoxide dismutase, an atomic structure has been determined for the human enzyme at 2.5 A resolution. The resolution of the bovine enzyme structure has been extended to 1.8 A. Atomic resolution data has been, collected for reduced and inhibitor-bound Cu,Zn superoxide dismutases. and the interpretation of the' electron density difference maps is in progress. The geometry and molecular surfaces of the active sites in these structures, together with biochemical data, suggest a specific model for the enzyme mechanism. Similarities in the active site geometry of the Mn and Fe superoxide dismutases with the Cu.Zn enzyme suggest that dismutation in these enzymes may follow a similar mechanism.  相似文献   

6.
Methanobacterium bryantii contains a single electrophoretically discernible superoxide dismutase, which constitutes 0.4% of the extractable protein. This enzyme has been purified to electrophoretic and ultracentrifugal homogeneity. It appears to be a tetramer. The subunits were tenaciously, but noncovalently bonded and were of identical size. The molecular weight of the enzyme was found to be 91,000 ± 2000. The specific activity of this enzyme was identical to that previously noted for the corresponding enzyme from Escherichia coli. The enzyme contained 2.7 atoms of Fe, 1.7 atoms of Zn, and less than 0.2 atoms Mn per tetramer. Its amino acid composition placed this enzyme with the other Mn- and Fe-containing superoxide dismutases. The M. bryantii enzyme was also similar to previously described Fe-containing superoxide dismutases in its optical and electron paramagnetic resonance spectra and in its susceptibility to inactivation by H2O2. The M. bryantii enzyme was ininhibited by N3?, but was less sensitive towards this inhibitor than other iron-containing superoxide dismutases.  相似文献   

7.
The primary structure of Cu-Zn superoxide dismutase from rabbit liver was investigated. The reduced and S-carboxymethylated enzyme was treated with cyanogen bromide, trypsin or Staphylococcus aureus proteinase V8. The resulting peptides were separated by high-performance liquid chromatography and sequenced by automated Edman degradation. With the exception of the N- and C-terminus the complete sequence was established by means of overlapping peptides. The N-terminus is blocked and thus not susceptible to Edman degradation. The amino-acid composition of the tryptic N-terminal peptide corresponds to that of the cytoplasmatic Cu-Zn superoxide dismutases of other mammals investigated. The chromatographic behaviour of these N-terminal peptides on a reversed phase C18 column is also identical, thus suggesting also for the rabbit Cu-Zn superoxide dismutase the N-terminal sequence Ac-Ala-Thr-Lys. The C-terminus was demonstrated to have the sequence -Ile-Ala-Pro by enzymatic degradation with carboxypeptidase Y. The complete amino-acid sequence of the rabbit Cu-Zn superoxide dismutase consists of 152 amino-acids and shows the expected homology to other Cu-Zn enzymes published so far. The aspartate and six histidine residues known to complex the metal ions are conserved at homologous positions. This also applies for the arginine residue near the C-terminus which is supposed to direct the anionic superoxide radical towards the active centre of the enzyme. The amino acid sequence of the rabbit Cu-Zn superoxide dismutase corresponds to those of other mammals in more than 80% of its amino-acid residues. From a total of 152 amino-acid residues the rabbit shares with rat 128, with mouse 130, with horse 127, with pig 126/127, with cattle 130 and with man 131 amino acids in homologous positions. However the Cu-Zn superoxide dismutases of closely related mammals like rats and mice differ in only five amino acid residues of their sequence. A phylogenetic closer relatedness between lagomorphs and rodents than between other orders of mammals, could not be derived from the sequence data given. Rather rodents and lagomorphs are to be considered as two evolutionary independent orders of mammals.  相似文献   

8.
The complete amino-acid sequence of Cu-Zn superoxide dismutase from white cabbage (Brassica oleracea) is reported. The polypeptide chain consists of 151 amino acids and has a molecular mass of 15,604 Da. The primary structure of the reduced and S-carboxymethylated protein was determined by automated solid phase sequence analysis of tryptic fragments and peptides obtained by digestion with Staphylococcus aureus proteinase V8. The protein shows a free amino terminus as was found for all non-mammalian Cu-Zn enzymes so far sequenced. Comparison of the amino-acid sequence from the plant Cu-Zn enzyme with those from nine eukaryotic enzymes reveals a high degree of homology (50-64%) among these enzymes. As already described for all the eukaryotic Cu-Zn superoxide dismutases also the plant enzyme shows a low homology (about 28%) with the bacteriocuprein of Photobacterium leiognathi. However, the amino-acid residues involved in metal binding, the half-cystine residues forming the intermolecular disulfide bridge, one of the arginine and some glycine and proline residues are conserved in all eleven Cu-Zn superoxide dismutases. Although the precise role of the 23 completely conserved residues is not yet completely understood, they appear to almost define the minimum structural requirements for optimizing the superoxide dismutation at the catalytic site, since functional differences between the eleven enzymes are not detectable.  相似文献   

9.
A hybrid superoxide dismutase containing both functional iron and manganese   总被引:15,自引:0,他引:15  
A hybrid superoxide dismutase containing functional Mn and Fe has been isolated from Escherichia coli. Streptomycin, which binds tightly to both the Mn- and the Fe-containing superoxide dismutases, had the expected effect on the electrophoretic and chromatographic behavior of the hybrid. Treatment of the hybrid with H2O2, which selectively inactivates the Fe-containing enzyme, resulted in partial inactivation accompanied by a resegregation of subunits, with the formation of active Mn-enzyme and inactive Fe-enzyme. A similar resegregation of subunits was observed when the hybrid was exposed to 2.5 M guanidinium chloride. Hybrids containing Mn or Fe could be generated in vitro by mixing the Mn-enzyme with the Fe-enzyme, removing metals with 8-hydroxyquinoline in the presence of 2.5 M guanidinium chloride, and then dialyzing against Mn(II) or Fe(II) salts. Ten per cent of the activity of the Fe-superoxide dismutases is resistant to H2O2, which correlates with its content of Mn. Since the activity remaining after exhaustive treatment with H2O2 exhibited the electrophoretic mobility of the Fe-enzyme, we concluded that some of the active sites of the Fe-enzyme were actually occupied by Mn. It should be noted, however, that for purposes of metal reconstitution experiments, a definite specificity was demonstrated. The Mn-enzyme was reconstituted with Mn(II), whereas the Fe-enzyme activity was recovered using only Fe(II). We propose that the Fe-superoxide dismutase may be heterogeneous and that 10% of its activity is actually due to a Mn-containing variant with the same electrophoretic mobility. Only the apohybrid enzyme regained enzymatic activity using both Mn(II) and Fe(II).  相似文献   

10.
G D Lawrence  D T Sawyer 《Biochemistry》1979,18(14):3045-3050
Bovine erythrocyte superoxide dismutase and two manganese-containing superoxide dismutases have been reduced by the indirect coulometric titration method with methylviologen as the mediator-titrant. On the basis of the titration data the manganese-containing superoxide dismutases contain 1 g-atom of metal per mol of enzyme (dimer). E0' = +0.31 V for the enzyme from Escherichia coli which exhibits a complicated pH dependence above neutral pH. The Bacillus stearothermophilus manganese-containing enzyme has an E0' = +0.26 V and delta Em/pH is 50 mV. Bovine erythrocyte superoxide dismutase exhibits anomalous behavior in the coulometric titration curves, which is indicative of two nonequivalent copper centers in the enzyme. Addition K3Fe(CN)6 or K2IrCl6 to the enzyme solution, prior to coulometric titration, indicates that these anions bind preferentially to one of the copper centers.  相似文献   

11.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was purified to homogeneity from a higher plant for the first time. The enzyme was isolated fromPisum sativum leaf extracts by thermal fractionation, ammonium sulfate salting out, ion-exchange and gel-filtration column chromatography, and preparative polyacrylamide gel electrophoresis. Pure manganese superoxide dismutase had a specific activity of about 3,000 U mg-1 and was purified 215-fold, with a yield of 1.2 mg enzyme per kg whole leaf. The manganese superoxide dismutase had a molecular weight of 94,000 and contained one g-atom of Mn per mol of enzyme. No iron and copper were detected. Activity reconstitution experiments with the pure enzyme ruled out the possibility of a manganese loss during the purification procedure. The stability of manganese superoxide dismutase at-20°C, 4°C, 25°C, 50°C, and 60°C was studied, and the enzyme was found more labile at high temperatures than bacterial manganese superoxide dismutases and iron superoxide dismutases from an algal and bacterial origin.Abbreviations NBT nitro blue tetrazolium - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

12.
Differential temperature sensitivity of pea superoxide dismutases   总被引:3,自引:1,他引:2       下载免费PDF全文
Burke JJ  Oliver MJ 《Plant physiology》1992,100(3):1595-1598
The activity of pea (Pisum sativum L.) Cu/Zn and Mn superoxide dismutase isoforms was evaluated across a range of temperatures from 10 to 45°C. Maximal activity of the Cu/Zn and Mn superoxide dismutase isoforms was observed at 10°C. Both cytoplasmic and chloroplast Cu/Zn superoxide dismutases exhibit a reduction in staining intensity with increasing temperatures. Mn superoxide dismutase, however, maintained a relatively constant staining intensity across the range of temperatures evaluated. An unrelated enzyme used as a control, malate dehydrogenase, exhibited the expected increase in staining activity with increasing temperatures. These results describe a unique response of a protection enzyme to temperature.  相似文献   

13.
Superoxide dismutases: active sites that save, but a protein that kills   总被引:4,自引:0,他引:4  
Protection from oxidative damage is sufficiently important that biology has evolved three independent enzymes for hastening superoxide dismutation: the Cu- and Zn-containing superoxide dismutases (Cu,Zn-SODs), the SODs that are specific for Fe or Mn or function with either of the two (Fe-SODs, Mn-SODs or Fe/Mn-SODs), and the SODs that use Ni (Ni-SODs). Despite the overwhelming similarities between the active sites of Fe-SOD and Mn-SOD, the mechanisms and redox tuning of these two sites appear to incorporate crucial differences consistent with the differences between Fe3+/2+ and Mn3+/2+. Ni-SOD is revealed by spectroscopy to employ completely different ligation to that of the other SODs while nonetheless incorporating a device also found in Cu,Zn-SOD. Finally, the protein of human Cu,Zn-SOD appears to be an important contributor to the development of amyotrophic lateral sclerosis, possibly because of its propensity for extended beta-sheet formation.  相似文献   

14.
A cyanide-insensitive superoxide dismutase was purified from tomato leaves (Lycopersicon esculentum, Mill., var. Venture) to apparent homogeneity. The enzyme had twofold higher specific activity (about 4000 standard units) than ferric superoxide dismutases purified from Brassica campestris [Salin, M. L. and Bridges, S. M. (1980) Arch. Biochem. Biophys. 201, 369-374] and Nuphar luteum [Salin, M.L. and Bridges, S. M. (1982) Plant Physiol. 69, 161-165]. The protein had a relative molecular mass of about 42000 and was composed of two equal subunits noncovalently joined. It was negatively charged (pI = 4.6) and contained about 1.45 mol Fe/mol dimer and negligible amounts of Mn, Cu and Zn. Absorption spectrum and sensitivity to NaN3, H2O2 and temperature are also reminiscent of other ferric superoxide dismutases. Comparison of amino acid composition indicated, however, a closer relationship to the Mn-containing enzymes rather than to other Fe-containing superoxide dismutases. Two possible ways of Fe-containing superoxide dismutase acquisition by vascular plants were suggested.  相似文献   

15.
The effect of different Mn levels on the isozyme pattern of superoxide dismutase was investigated. Pisum sativum L. plants were grown in nutrient solutions containing three Mn concentrations: 0.005 g/ml (deficient), 0.05 g/ml (low), and 0.5 g/ml (optimum). Leaf extracts contained three electrophoretically distinct superoxide dismutases (SOD), two of which were inhibited by cyanide and were probably Cu-Zn-SODs, while the third one was CN-insensitive and could be either an Mn- or an Fe-SOD. At 0.005 g/ml Mn supply the CN-insensitive SOD was significantly depressed at 15, 30, and 45 days of growth, whereas at 0.05 g/ml Mn this isozyme was significantly decreased only at 45 days growth. The two CN-sensitive SODs were inversely related to the CN-resistant enzyme, the activities of the former enzymes being significantly increased at Mn-deficient levels throughout plant growth. Metal determinations of the plants showed that at low concentrations of Mn in the nutrient media, copper and zinc content of leaves increased: the lower the Mn level, the higher the increase produced. The CN-resistant SOD activity, as judged by its dependency on Mn, appears to be an Mn-SOD rather than an Fe-SOD. In the light of the results obtained, the use of the enzyme system superoxide dismutase for the study of the role and interactions between Mn, Cu, and Zn in the plant cell is proposed.Abbreviations EDTA ethylenediaminotetraacetic acid - NBT nitro blue terazolium - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

16.
Regulation of Mn-SOD activity in the mouse heart: glucose effect   总被引:1,自引:0,他引:1  
Intraperitoneal injection of glucose was found to cause a dose and time dependent suppression of superoxide dismutase activity in mouse heart. Manganese superoxide dismutase was more sensitive to glucose suppression than Cu-Zn superoxide dismutase. While glucose suppressed the Mn form of the enzyme at the concentration of 1.5 mg/kg, it did not have a significant effect on Cu-Zn superoxide dismutase activity at this concentration. The maximum suppression for both forms of superoxide dismutase activity occurred at 4.5 mg/kg. Glucose also suppressed manganese superoxide dismutase activity in mouse heart for a longer period of time compared to Cu-Zn superoxide dismutase. Glucose suppression also occurred in mouse brain. The glucose suppression effect on manganese superoxide dismutase activity in the heart was partially alleviated by X-irradiation.  相似文献   

17.
《Free radical research》2013,47(1-2):19-26
Various superoxide dismutases from different sources, containing Cu, Mn or Fe at the active centre, have been examined with respect to anti-inflammatory activity in a model using adriamycin-induced edema in rats. Very large differences in efficiency are observed, the most active being E. coli Mn-SOD and bovine Cu-SOD. TheFe-SOD from E coli is active whereas P. leiognathiFe-SODisnot. Human Mn-SOD shows no significant activity and homologous rat Cu-SOD is totally inactive. Yeast Cu-SOD shows proinflammatory properties. Anti-inflammatory activity is not a function of molecular weight or circulation life-time.  相似文献   

18.
Pseudonocardia sp. strain K1 is the only Gram-positive bacterium among the bacteria aerobically metabolizing polyethylene glycol (PEG). Generally, PEG is metabolized by an oxidative pathway in which a terminal alcohol group of PEG is oxidized to aldehyde and to carboxylic acid and then an ether bond is oxidatively cleaved. As the cell-free extract of Pseudonocardia sp. strain K1 has PEG dehydrogenase, PEG aldehyde dehydrogenase and diglycolic acid (DGA) dehydrogenase (DGADH) activities, all of which are constitutively formed, the strain has a metabolic pathway similar to that so far known. We purified an ether bond-splitting enzyme as DGADH. The molecular mass of the enzyme was estimated to be 55 kDa; and it consisted of two identical subunits. The enzyme oxidatively cleaved both an ether bond of PEG 3000 dicarboxylic acid and DGA. The N-terminal amino acid sequence of the purified enzyme had high homology with various superoxide dismutases and the enzyme had also superoxide dismutase activity. The atomic absorption spectrum showed that approximately one atom of Fe was included in each subunit of the enzyme. DGADH activity increased in the cells grown in a PEG medium supplemented with FeCl3. Thus, we concluded that the enzyme purified from Pseudonocardia sp. strain K1 is a new ether bond-splitting enzyme.  相似文献   

19.
Superoxide dismutases are enzymes that defend against oxidative stress through decomposition of superoxide radical. Escherichia coli contains two highly homologous superoxide dismutases, one containing manganese (MnSOD) and the other iron (FeSOD). Although E. coli Mn and FeSOD catalyze the dismutation of superoxide with comparable rate constants, it is not known if they are physiologically equivalent in their protection of cellular targets from oxyradical damage. To address this issue, isogenic strains of E. coli containing either Mn or FeSOD encoded on a plasmid and under the control of tac promoter were constructed. SOD specific activity in the Mn and FeSOD strains could be controlled by the concentration of isopropyl beta-thiogalactoside in the medium. The tolerance of these strains to oxidative stress was compared at equal Mn and FeSOD specific activities. Our results indicate that E. coli Mn and FeSOD are not functionally equivalent. The MnSOD is more effective than FeSOD in preventing damage to DNA, while the FeSOD appears to be more effective in protecting a cytoplasmic superoxide-sensitive enzyme. These data are the first demonstration that Mn and FeSOD are adapted to different antioxidant roles in E. coli.  相似文献   

20.
Three electrophoretically distinct superoxide dismutases (EC 1.15.1.1) were observed in the crude extracts from Pseudomonas ovalis. One of these was isolated as an iron-containing superoxide dismutase. It contained 1.4 gatoms of Fe per mol of enzyme, and had a specific activity of 3900 units per mg of protein. A crystallized enzyme contained 1.1 gatoms of Fe per mol of enzyme, and had a specific activity of 3100 units per mg of protein. The results of sedimentation equilibrium and gel filtration indicated a molecular weight of 40,000. S020,W was estimated as 3.18 by sedimentation velocity study. Sodium dodecyl sulfate gel electrophoresis indicated that the enzyme was composed of two subunits, and had a molecular weight of 19,500. Analysis for sulfhydryl groups showed that there were four such groups per mol of enzyme. The spectrum of visible and ultraviolet region, the amino acid composition, the CD spectrum of the enzyme, and the effect of certain compounds on the enzyme, were studied and compared with iron-containing superoxide dismutases isolated from other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号