首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘志广  张丰盘 《生态学报》2016,36(2):360-368
随着种群动态和空间结构研究兴趣的增加,激发了大量的有关空间同步性的理论和实验的研究工作。空间种群的同步波动现象在自然界广泛存在,它的影响和原因引起了很多生态学家的兴趣。Moran定理是一个非常重要的解释。但以往的研究大多假设环境变化为空间相关的白噪音。越来越多的研究表明很多环境变化的时间序列具有正的时间自相关性,也就是说用红噪音来描述更加合理。因此,推广经典的Moran效应来处理空间相关红噪音的情形很有必要。利用线性的二阶自回归过程的种群模型,推导了两种群空间同步性与种群动态异质性和环境变化的时间相关性(即环境噪音的颜色)之间的关系。深入分析了种群异质性和噪音颜色对空间同步性的影响。结果表明种群动态异质性不利于空间同步性,但详细的关系比较复杂。而红色噪音的同步能力体现在两方面:一方面,本身的相关性对同步性有贡献;另一方面,环境变化时间相关性可以通过改变种群密度依赖来影响同步性,但对同步性的影响并无一致性的结论,依赖于种群的平均动态等因素。这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义。  相似文献   

2.
The Spectro-Temporal Receptive Field (STRF) of an auditory neuron has been introduced experimentally on the base of the average spectrotemporal structure of the acoustic stimuli which precede the occurrence of action potentials (Aertsen et al., 1980, 1981). In the present paper the STRF is considered in the general framework of nonlinear system theory, especially in the form of the Volterra integral representation. The STRF is proposed to be formally identified with a linear functional of the second order Volterra kernel. The experimental determination of the STRF leads to a formulation in terms of the Wiener expansion where the kernels can be identified by evaluation of the system's input-output correlations. For a Gaussian stimulus ensemble and a nonlinear system with no even order contributions of order higher than two, it is shown that the second order cross correlation of stimulus and response, normalized with respect to the spectral contents of the stimulus ensemble, leads to the stimulus-invariant spectrotemporal receptive field. The investigation of stimulus-invariance of the STRF for more general nonlinear systems and for stimulus ensembles which can be generated by nonlinear transformations of Gaussian noise involve the evaluation of higher order stimulus-response correlation functions.  相似文献   

3.
A technique of on-line identification of linear system characteristics from sensory systems with spike train or analog voltage outputs was developed and applied to the semicircular canal. A pseudorandom binary white noise input was cross-correlated with the system's output to produce estimates of linear system unit impulse responses (UIRs), which were then corrected for response errors of the input transducers. The effects of variability in the system response characteristics and sensitivity were studied by employing the technique with known linear analog circuits. First-order unit afferent responses from the guitarfish horizontal semicircular canal were cross-correlated with white noise rotational acceleration inputs to produce non-parametric UIR models. In addition, the UIRs were fitted by nonlinear regression to truncated exponential series to produce parametric models in the form of low-order linear system equations. The experimental responses to the white noise input were then compared with those predicted from the UIR models linear convolution, and the differences were expressed as a percent mean-square-error (%MSE). The average difference found from a population of 62 semicircular canal afferents was relatively low mean and standard deviation of 10.2 +/- 5.9 SD%MSE, respectively. This suggests that relatively accurate inferences can be made concerning the physiology of the semicircular canal from the linear characteristics of afferent responses.  相似文献   

4.
5.
We have examined the effects of current and conductance noise in a single-neuron model which can generate a variety of physiologically important impulse patterns. Current noise enters the membrane equation directly while conductance noise is propagated through the activation variables. Additive Gaussian white noise which is implemented as conductance noise appears in the voltage equations as an additive and a multiplicative term. Moreover, the originally white noise is turned into colored noise. The noise correlation time is a function of the system's control parameters which may explain the different effects of current and conductance noise in different dynamic states. We have found the most significant, qualitative differences between different noise implementations in a pacemaker-like, tonic firing regime at the transition to chaotic burst discharges. This reflects a dynamic state of high physiological relevance.  相似文献   

6.
Spatial synchrony of oscillating populations has been observed in many ecological systems, and its influences and causes have attracted the interest of ecologists. Spatially correlated environmental noises, dispersal, and trophic interactions have been considered as the causes of spatial synchrony. In this study, we develop a spatially structured population model, which is described by coupled-map lattices and incorporates both dispersal and colored environmental noise. A method for generating time series with desired spatial correlation and color is introduced. Then, we use these generated time series to analyze the influence of noise color on synchrony in population dynamics. The noise color refers to the temporal correlation in the time series data of the noise, and is expressed as the degree of (first-order) autocorrelation for autoregressive noise. Patterns of spatial synchrony are considered for stable, periodic and chaotic population dynamics. Numerical simulations verify that environmental noise color has a major influence on the level of synchrony, which depends strongly on how noise is introduced into the model. Furthermore, the influence of noise color also depends on patterns of dispersal between local populations. In addition, the desynchronizing effect of reddened noise is always weaker than that of white noise. From our results, we notice that the role of reddened environmental noise on spatial synchrony should be treated carefully and cautiously, especially for the spatially structured populations linked by dispersal.  相似文献   

7.
Many species exhibit widespread spatial synchrony in population fluctuations. This pattern is of great ecological interest and can be a source of concern when a species is rare or endangered. Moran’s theorem suggests that if two (or more) populations sharing a common linear density-dependence in the renewal process are disturbed with correlated noise, they will become synchronized with correlation matching the noise correlation. In this report, correlation of nonidentical populations that are described by linear and stationary autoregressive processes is analyzed. We show that the expected spatial synchrony between two populations can be decomposed into two multiplicative components. One is the demographic component related to the values of the autoregressive coefficients and the noise color. The other is the spatial correlation of the environmental colored noise. The main results are consistent with the predictions of previous experiments and simulations, and the importance of this report is to provide theoretical support.  相似文献   

8.
The aim of this paper is to explore the phenomenon of aperiodic stochastic resonance in neural systems with colored noise. For nonlinear dynamical systems driven by Gaussian colored noise, we prove that the stochastic sample trajectory can converge to the corresponding deterministic trajectory as noise intensity tends to zero in mean square, under global and local Lipschitz conditions, respectively. Then, following forbidden interval theorem we predict the phenomenon of aperiodic stochastic resonance in bistable and excitable neural systems. Two neuron models are further used to verify the theoretical prediction. Moreover, we disclose the phenomenon of aperiodic stochastic resonance induced by correlation time and this finding suggests that adjusting noise correlation might be a biologically more plausible mechanism in neural signal processing.  相似文献   

9.
10.
利用脉孢菌生物钟体系,研究了色噪音对其进行诱导所产生的日夜节律振荡信号及其内信号随机共振的行为.结果表明,色噪音的相关时间对该体系内信号随机共振的强弱起较大的影响作用.当无外信号存在时,色噪音的相关时间对体系内信号随机共振强度起抑制的作用,且随相关时间的增大,抑制作用增强.当外信号加到体系中时,由于相关时间和外信号的协同作用,相关时间不仅对其内信号随机共振强度起抑制的作用,而且还影响内信号随机共振峰的数目,即随相关时间的增大,可使单峰随机共振变为随机双共振.存在最佳的外信号频率使体系的内信号随机共振强度得到最大的增强,而其他频率的外信号却起抑制作用.色内噪音和色外噪音相比,前者对该体系进行诱导所得的内信号随机共振强度比后者的更强,而且体系对前者更敏感.另外,存在极限的噪音强度使白噪音和色噪音对该体系内信号随机共振的影响差异得以消失.所得结果可为治疗生物钟紊乱综合症提供理论依据,同时可更好地理解其他节奏机理,如心脏搏动节奏、呼吸节奏以及荷尔蒙水平的波动节奏等.  相似文献   

11.
The reverse engineering of metabolic networks from experimental data is traditionally a labor-intensive task requiring a priori systems knowledge. Using a proven model as a test system, we demonstrate an automated method to simplify this process by modifying an existing or related model--suggesting nonlinear terms and structural modifications--or even constructing a new model that agrees with the system's time series observations. In certain cases, this method can identify the full dynamical model from scratch without prior knowledge or structural assumptions. The algorithm selects between multiple candidate models by designing experiments to make their predictions disagree. We performed computational experiments to analyze a nonlinear seven-dimensional model of yeast glycolytic oscillations. This approach corrected mistakes reliably in both approximated and overspecified models. The method performed well to high levels of noise for most states, could identify the correct model de novo, and make better predictions than ordinary parametric regression and neural network models. We identified an invariant quantity in the model, which accurately derived kinetics and the numerical sensitivity coefficients of the system. Finally, we compared the system to dynamic flux estimation and discussed the scaling and application of this methodology to automated experiment design and control in biological systems in real time.  相似文献   

12.
Time correlation functions invariably suffer from random noise, especially at longer time intervals for which fewer data pairs are available. This noise is particularly of concern when calculating correlations that cannot be averaged over per-molecule contributions, such as stress in molecular simulations. In this work, a set of methods based in signal processing has been developed to reduce the inherent noise that is present in time- and frequency-domain representations of correlation functions. The stress time autocorrelation function, which leads to stress relaxation modulus and complex modulus, is used as an example. The difference between initial and final values of a time correlation function over a finite time domain is found to create so-called ‘leakage’ of noise from disallowed into harmonic frequencies during fast Fourier transformation. Decreasing this leakage effect through reflection to negative time and through applying a window function reduces noise levels significantly. Removing frequency components of insignificant magnitudes also provides significant noise reduction. Applying moving averages in the frequency and time domains also contributes to noise reduction. Specific results obtained by applying these methods to a model asphalt system enable more clear physical interpretations of the underlying relaxations after dramatic noise level reductions were attained.  相似文献   

13.
Dynamics of cockroach ocellar neurons   总被引:7,自引:6,他引:1       下载免费PDF全文
The incremental responses from the second-order neurons of the ocellus of the cockroach, Periplaneta americana, have been measured. The stimulus was a white-noise-modulated light with various mean illuminances. The kernels, obtained by cross-correlating the white-noise input against the resulting response, provided a measure of incremental sensitivity as well as of response dynamics. We found that the incremental sensitivity of the second-order neurons was an exact Weber-Fechner function; white-noise-evoked responses from second-order neurons were linear; the dynamics of second-order neurons remain unchanged over a mean illuminance range of 4 log units; the small nonlinearity in the response of the second-order neuron was a simple amplitude compression; and the correlation between the white-noise input and spike discharges of the second-order neurons produced a first-order kernel similar to that of the cell's slow potential. We conclude that signal processing in the cockroach ocellus is simple but different from that in other visual systems, including vertebrate retinas and insect compound eyes, in which the system's dynamics depend on the mean illuminance.  相似文献   

14.
Nonlinear systems with event-sequence input, such as are often encountered in neurophysiology, may be experimentally tested with all possible input sequences by stimulation with a Poisson process eventsequence. A complete predictive model of the system's response may be constructed from this data with the Wiener expansion based on the Poisson-Charlier polynomials. Here it is shown how this formulation leads to an efficient method for the evaluation of unknown systems by crosscorrelation, generalizing previous methods. The basic statistical properties of the procedure are demonstrated and the length of experiment required for accurate estimation of the model is computed. The procedure is translated into digital algorithms and the analogous procedures for white noise analysis are presented.  相似文献   

15.
16.
 The temporal patterns of action potentials fired by a two-point stochastic neuron model were investigated. In this model the membrane potential of the dendritic compartment follows the Orstein-Uhlenbeck process and is not affected by the spiking activity. The axonal compartment, corresponding to the spike initiation site, is described by a simplified RC circuit. Estimators of the mean and variance of the input, based on a sampling of the axonal membrane potential, were derived and applied to simulated data. The dependencies of the mean firing frequency and of the coefficient of variation and serial correlation of interspike intervals on the mean and variance of the input were also studied by computer simulation in both 1- and 2-point models. The main property distinguishing the 2-point model from the classical 1-point model is its ability to produce clusters of short (or long) intervals between spikes under conditions of constant stimulation, as often observed in real neurons. It is shown that the nearly linear frequency response of the neuron, starting with subthreshold values of the input, is accounted for by the variability of the input (noise), which indicates that noise can play a positive role in nervous systems. The linear response frequency with respect to noise of the models suggests that the neuron can function as a noise encoder. Received: 2 April 1993/Accepted in revised form: 15 September 1994  相似文献   

17.
Based on the FitzHugh–Nagumo (FHN) neuron model subjected to sine-Wiener (SW) noise, impacts of SW noise on weak periodic signal detection are investigated by calculating response measure Q for characterizing synchronization between the input signal and the output temporal activities of the neuron. It is numerically demonstrated that the response measure Q can achieve the optimal value under appropriate and moderate intensity or correlation time of SW noise, suggesting the occurrence of SW-noise-induced stochastic resonance. Furthermore, the optimal value of Q is sensitive to correlation time. Consequently, the correlation time of SW noise has a great influence on the performance of signal detection in the FHN neuron.  相似文献   

18.
Speech recognition systems for the automobile have a few weaknesses, including failure to recognize speech due to the mixing of environment noise from inside and outside the car and from other voices. Therefore, this paper features a technique for extracting only the selected target voice from input sound that is a mixture of voices and noises. The feature for selective speech extraction composes a correlation map of auditory elements by using similarity between channels and continuity of time, and utilizes a method of extracting speech features by using a non-parametric correlation coefficient. This proposed method was validated by showing that the average distortion of separation of the technique decreased by 0.8630 dB. It was shown that the performance of the selective feature extraction utilizing a cross correlation is good, but overall, the selective feature extraction utilizing a non-parametric correlation is better.  相似文献   

19.
The signal transduction and amplification in a Neurospora circadian clock system is studied by using the mechanism of internal signal stochastic resonance (ISSR). Two cases have been investigated: the case of no correlations between multiplicative and additive colored noises and the case of correlations between two noises. The results show that, in both cases, the noise-induced circadian oscillations can be transduced with the phenomenon of internal signal stochastic resonance (ISSR). However, the correlation time and intensity of an additive colored noise play different roles for the ISSR, driven by multiplicative colored noise, while the correlation time and intensity of multiplicative colored noise hardly influence the ISSR driven by additive colored noise. In addition, the ISSR can be amplified or suppressed at an appropriate range of the correlation intensity between two colored noises. The fundamental frequency of noise-induced circadian oscillations is hardly shifted with the increment of the intensity and correlation time of colored noises, which implies that the Neurospora system could be resistant to colored noises, exhibit strong vitality and sustain intrinsic circadian rhythms.  相似文献   

20.
We study the applicability of Van Kampen's linear noise approximation to the calculation of fluctuations in cells due to small number of molecules for simple genetic systems not previously considered. These systems include dimer formation and feedback. We explain why the linear noise approximation can be surprisingly effective, but also illustrate how it fails in a simple example when a protein probability distribution is not purely Gaussian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号